-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathplayer_util.py
executable file
·162 lines (140 loc) · 6.41 KB
/
player_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import division
import numpy as np
import torch
from torch.autograd import Variable
from torch.nn import L1Loss
from utils import ensure_shared_grads
class Agent(object):
def __init__(self, model, env, args, state, device):
self.model = model
self.env = env
self.num_agents = len(env.observation_space)
if 'continuous' in args.network:
self.action_high = [env.action_space[i].high for i in range(self.num_agents)]
self.action_low = [env.action_space[i].low for i in range(self.num_agents)]
self.dim_action = env.action_space[0].shape[0]
else:
self.dim_action = 1
self.eps_len = 0
self.args = args
self.values = []
self.log_probs = []
self.rewards = []
self.entropies = []
self.preds = []
self.done = True
self.info = None
self.reward = 0
self.device = device
self.rnn_out = args.rnn_out
self.num_steps = 0
self.n_steps = 0
self.state = state
self.hxs = torch.zeros(self.num_agents, self.rnn_out).to(device)
self.cxs = torch.zeros(self.num_agents, self.rnn_out).to(device)
def wrap_action(self, action, high, low):
action = np.squeeze(action)
out = action * (high - low)/2.0 + (high + low)/2.0
return out
def action_train(self):
self.n_steps += 1
value_multi, action_env_multi, entropy, log_prob, (self.hxs, self.cxs), R_pred = self.model(
(Variable(self.state, requires_grad=True), (self.hxs, self.cxs)))
if 'continuous' in self.args.network:
action_env_multi = [self.wrap_action(action_env_multi[i], self.action_high[i], self.action_low[i])
for i in range(self.num_agents)]
# model return action_env_multi, entropy, log_prob
state_multi, reward_multi, self.done, self.info = self.env.step(action_env_multi)
# add to buffer
self.reward_org = reward_multi.copy()
self.reward = torch.tensor(reward_multi).float().to(self.device)
self.state = torch.from_numpy(state_multi).float().to(self.device)
self.eps_len += 1
self.values.append(value_multi)
self.entropies.append(entropy)
self.log_probs.append(log_prob)
self.rewards.append(self.reward.unsqueeze(1))
self.preds.append(R_pred)
return self
def action_test(self):
with torch.no_grad():
value_multi, action_env_multi, entropy, log_prob, (self.hxs, self.cxs), R_pred = self.model(
(Variable(self.state), (self.hxs, self.cxs)), True)
if 'continuous' in self.args.network:
action_env_multi = [self.wrap_action(action_env_multi[i], self.action_high[i], self.action_low[i])
for i in range(self.num_agents)]
state_multi, self.reward, self.done, self.info = self.env.step(action_env_multi)
self.state = torch.from_numpy(state_multi).float().to(self.device)
self.eps_len += 1
return self
def reset(self):
self.state = torch.from_numpy(self.env.reset()).float().to(self.device)
self.num_agents = self.state.shape[0]
self.eps_len = 0
self.reset_rnn_hiden()
def clear_actions(self):
self.values = []
self.log_probs = []
self.rewards = []
self.entropies = []
self.preds = []
return self
def reset_rnn_hiden(self):
self.cxs = torch.zeros(self.num_agents, self.rnn_out).to(self.device)
self.hxs = torch.zeros(self.num_agents, self.rnn_out).to(self.device)
self.cxs = Variable(self.cxs)
self.hxs = Variable(self.hxs)
def update_rnn_hiden(self):
self.cxs = Variable(self.cxs.data)
self.hxs = Variable(self.hxs.data)
def optimize(self, params, optimizer, shared_model, training_mode, device_share):
R = torch.zeros(self.num_agents, 1).to(self.device)
if not self.done:
# predict value
state = self.state
value_multi, _, _, _, _, _ = self.model(
(Variable(state, requires_grad=True), (self.hxs, self.cxs)))
for i in range(self.num_agents):
R[i][0] = value_multi[i].data
self.values.append(Variable(R).to(self.device))
policy_loss = torch.zeros(self.num_agents, 1).to(self.device)
value_loss = torch.zeros(self.num_agents, 1).to(self.device)
pred_loss = torch.zeros(1, 1).to(self.device)
entropies = torch.zeros(self.num_agents, self.dim_action).to(self.device)
w_entropies = float(self.args.entropy)*torch.ones(self.num_agents, self.dim_action).to(self.device)
if self.num_agents > 1:
w_entropies[1:][:] = float(self.w_entropy_target)
R = Variable(R, requires_grad=True).to(self.device)
gae = torch.zeros(1, 1).to(self.device)
l1_loss = L1Loss()
for i in reversed(range(len(self.rewards))):
if 'reward' in self.args.aux:
pred_loss = pred_loss + l1_loss(self.preds[i][0], self.rewards[i][0])
R = self.args.gamma * R + self.rewards[i]
advantage = R - self.values[i]
value_loss = value_loss + 0.5 * advantage.pow(2)
# Generalized Advantage Estimataion
delta_t = self.rewards[i] + self.args.gamma * self.values[i + 1].data - self.values[i].data
gae = gae * self.args.gamma * self.args.tau + delta_t
policy_loss = policy_loss - \
(self.log_probs[i] * Variable(gae)) - \
(w_entropies * self.entropies[i])
entropies += self.entropies[i]
self.model.zero_grad()
loss_tracker = (policy_loss[0] + 0.5 * value_loss[0]).mean()
if self.num_agents > 1:
loss_target = (policy_loss[1] + 0.5 * value_loss[1]).mean()
if training_mode == 0: # train tracker
loss = loss_tracker
elif training_mode == 1: # train target
loss = loss_target
else:
loss = loss_tracker + loss_target
if 'reward' in self.args.aux and training_mode != 0:
loss += pred_loss.mean()
loss.backward()
torch.nn.utils.clip_grad_norm_(params, 50)
ensure_shared_grads(self.model, shared_model, self.device, device_share)
optimizer.step()
self.clear_actions()
return policy_loss, value_loss, entropies, pred_loss