forked from MichiganCOG/Video-Grounding-from-Text
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis.py
executable file
·248 lines (190 loc) · 9.38 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Visualize results
# general packages
import argparse
import numpy as np
import random
import os
import errno
import time
import math
import cv2
from collections import defaultdict
# torch
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from torch.nn.utils import clip_grad_norm
import torch.distributed as dist
import torch.utils.data.distributed
import torchvision.transforms as transforms
# util
from data.yc2_test_dataset import Yc2TestDataset, yc2_test_collate_fn
from model.dvsa import DVSA
from tools.test_util import compute_ba, print_results
parser = argparse.ArgumentParser()
# Data input settings
parser.add_argument('--start_from', default='', help='path to a model checkpoint to initialize model weights from. Empty = dont')
parser.add_argument('--image_root', default='./data/yc2/video_segments_25fps')
parser.add_argument('--box_file', default='./data/yc2/annotations/yc2_bb_val_annotations.json')
parser.add_argument('--val_split', default=['validation'], type=str, nargs='+', help='validation data folder')
parser.add_argument('--dataset_file', default='./data/yc2/annotations/youcookii_annotations.json')
parser.add_argument('--num_workers', default=6, type=int)
parser.add_argument('--num_class', default=67, type=int)
parser.add_argument('--class_file', default='./data/class_file.csv', type=str)
parser.add_argument('--rpn_proposal_root', default='./data/yc2', type=str)
parser.add_argument('--roi_pooled_feat_root', default='./data/yc2/roi_pooled_feat', type=str)
# Model settings: General
parser.add_argument('--num_proposals', default=100, type=int)
parser.add_argument('--enc_size', default=128, type=int)
parser.add_argument('--accu_thresh', default=0.5, type=float)
parser.add_argument('--num_frm', default=5, type=int)
# Model settings: Object Interaction
parser.add_argument('--hidden_size', default=256, type=int)
parser.add_argument('--n_layers', default=1, type=int)
parser.add_argument('--n_heads', default=4, type=int)
parser.add_argument('--attn_drop', default=0.2, type=float, help='dropout for the object interaction transformer layer')
# Optimization: General
parser.add_argument('--valid_batch_size', default=1, type=int)
parser.add_argument('--vis_dropout', default=0.2, type=float, help='dropout for the visual embedding layer')
parser.add_argument('--seed', default=123, type=int, help='random number generator seed to use')
parser.add_argument('--cuda', dest='cuda', action='store_true', help='use gpu')
parser.add_argument('--id', default='', type=str)
parser.set_defaults(cuda=False)
parser.set_defaults(vis_output=True)
args = parser.parse_args()
# arguments inspection
assert(args.valid_batch_size == 1)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
if args.cuda:
torch.cuda.manual_seed_all(args.seed)
def get_dataset(args):
valid_dataset = Yc2TestDataset(args.class_file, args.dataset_file, args.val_split,\
args.image_root, args.box_file, num_proposals=args.num_proposals, \
rpn_proposal_root=args.rpn_proposal_root, \
roi_pooled_feat_root=args.roi_pooled_feat_root, vis_output=args.vis_output)
valid_loader = DataLoader(valid_dataset,
batch_size=args.valid_batch_size,
shuffle=False,
num_workers=args.num_workers,
collate_fn=yc2_test_collate_fn)
return valid_loader
def get_model(args):
model = DVSA(args.num_class, enc_size=args.enc_size, dropout=args.vis_dropout, \
hidden_size=args.hidden_size, n_layers=args.n_layers, n_heads=args.n_heads, \
attn_drop=args.attn_drop, num_frm=args.num_frm)
# Initialize the networks and the criterion
if len(args.start_from) > 0:
print("Initializing weights from {}".format(args.start_from))
model.load_state_dict(torch.load(args.start_from, map_location=lambda storage, location: storage))
# Ship the model to GPU, maybe
if args.cuda:
model = model.cuda()
return model
def tensor2video(x_np, ind):
T, H, W, C = x_np.shape
if not os.path.isdir('./vis/'+args.id):
os.mkdir('./vis/'+args.id)
video = cv2.VideoWriter('./vis/'+args.id+'/'+str(ind)+'.avi', cv2.VideoWriter_fourcc('M','J','P','G'), 10, (W, H))
for t in range(T):
video.write(cv2.cvtColor(x_np[t,:,:,:], cv2.COLOR_RGB2BGR))
video.release()
def main(args):
print('loading dataset')
valid_loader = get_dataset(args)
print('building model')
model = get_model(args)
valid(model, valid_loader)
def valid(model, loader):
model.eval() # evaluation mode
ba_score = defaultdict(list) # box accuracy metric
vid_ba_lst = []
for iter, data in enumerate(loader):
print('evaluating iter {}...'.format(iter))
# box_batch: N x O x T/25 x 5 (id,ytl,xtl,ybr,xbr)
# ytl=-1 if the object is outside/non-exist/occlusion
(x_rpn_batch, obj_batch, box_batch, box_label_batch,
img_notrans_batch, rpn_batch, rpn_original_batch, vis_name) = data
x_rpn_batch = Variable(x_rpn_batch)
obj_batch = Variable(obj_batch)
rpn_batch = Variable(rpn_batch)
if args.cuda:
x_rpn_batch = x_rpn_batch.cuda()
obj_batch = obj_batch.cuda()
box_batch = box_batch.cuda()
box_label_batch = box_label_batch.cuda()
rpn_batch = rpn_batch.cuda() # N, num_frames, num_proposals, 4
rpn_original_batch = rpn_original_batch.cuda() # w/o coordinate normalization
# divide long segment into pieces
attn_weights = model.output_attn(x_rpn_batch, obj_batch).data
# qualitative results, generate attention mask
# cuda out of memory, ship to cpu if necessary
visualize_attn(img_notrans_batch, attn_weights, rpn_batch.data, box_batch,
obj_batch.data, box_label_batch, vis_name, loader, args.vis_output)
# quantitative results
ba = compute_ba(attn_weights, rpn_original_batch, box_batch, obj_batch.data, box_label_batch, thresh=args.accu_thresh)
hits, misses = 0, 0
for (i,h,m) in ba:
ba_score[i].append((h, m))
hits+=h
misses+=m
if hits+misses != 0:
vid_ba_lst.append((vis_name, hits*1./(hits+misses)))
# save the ba score for each segment
with open('ba-per-seg-'+args.id+'.txt', 'w') as f:
for i in vid_ba_lst:
f.write(','.join((i[0], str(i[1])))+'\n')
def visualize_attn(img_batch, attn_weights, rpn, box_batch, obj_batch, box_label_batch, vis_name, loader, vis_output=False):
# img_batch has not been resized
display_factor = 0.5
bg_mask = 0.1
N, C, T, H, W = img_batch.size()
_, T_rp, num_proposals, _ = rpn.size()
_, O, T_fm, num_proposals = attn_weights.size() # the size of feature map
assert(T_fm == T_rp)
attn_mask_output = []
rpn = rpn.clone()
rpn[:,:,:,0] = torch.floor(rpn[:,:,:,0]*W-0.5)
rpn[:,:,:,2] = torch.ceil(rpn[:,:,:,2]*W-0.5)
rpn[:,:,:,1] = torch.floor(rpn[:,:,:,1]*H-0.5)
rpn[:,:,:,3] = torch.ceil(rpn[:,:,:,3]*H-0.5)
rpn = rpn.int()
attn_mask = img_batch.squeeze(0).permute(1, 2, 3, 0).contiguous().numpy()
attn_mask = attn_mask[12::25]
for i in range(O):
# find object name
class_dict = loader.dataset.class_dict
class_lst = list(class_dict.keys())[list(class_dict.values()).index(obj_batch[0, i].item())]
print(class_lst)
for t in range(T_fm):
frm_on_rpn = rpn[0, t]
n = torch.max(attn_weights[0, i, t, :], dim=0)[1]
h_range = [max(frm_on_rpn[n,1],0), max(frm_on_rpn[n,3],1)]
w_range = [max(frm_on_rpn[n,0],0), max(frm_on_rpn[n,2],1)]
# draw generated
cv2.rectangle(attn_mask[t], (w_range[0], h_range[0]), (w_range[1], h_range[1]), (0, 1, 0), 2)
cv2.putText(attn_mask[t], class_lst, (w_range[0], h_range[0]),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (1,1,1),
1)
# draw the ground-truth bounding box
matched_ind = torch.nonzero(box_label_batch[0]==obj_batch[0, i]).squeeze()
if matched_ind.view(-1).size(0): # ndimension is incorrect for torch.tensor(1) and torch.Tensor()
matched_box = torch.index_select(box_batch[0], 0, matched_ind)
for t in range(matched_box.size(1)):
for o in range(matched_box.size(0)):
box_ins = matched_box[o, t, :]
if box_ins[0] != -1:
box_ins = (box_ins/2).long()
# draw gt
cv2.rectangle(attn_mask[t], (box_ins[2], box_ins[1]), (box_ins[4], box_ins[3]),
(1, 0, 0), 2)
cv2.putText(attn_mask[t], class_lst, (box_ins[2], box_ins[1]),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (1,1,1), 1)
# write video file
tensor2video((attn_mask*255.0).astype(np.uint8), vis_name)
if __name__ == "__main__":
main(args)