forked from Shivi91/Rosalind-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
097_GREP.py
50 lines (41 loc) · 1.79 KB
/
097_GREP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python
'''
A solution to a ROSALIND bioinformatics problem.
Problem Title: Genome Assembly with Perfect Coverage and Repeats
Rosalind ID: GREP
Rosalind #: 097
URL: http://rosalind.info/problems/grep/
'''
def coverings(s, edges, k):
'''Generate all possible complete cycle coverings from the given edges.'''
# Determine the possible next elements to add to the covering.
add_on = [index for index, item in enumerate(edges) if item[0] == s[-k+1:]]
# If there's nothing left to add, return the string if we have a perfect covering (no edges left).
# If we don't have perfect covering, return an empty list, which gets removed when flattened.
if len(add_on) == 0:
return [s if edges == [] else []]
# Otherwise, proceed with all possible coverings.
else:
return [coverings(s+edges[i][1][-1], edges[:i]+edges[i+1:], k) for i in add_on]
def flatten(lst):
'''Unpacks nested lists as a generator.'''
for element in lst:
if isinstance(element, list):
for subelement in flatten(element):
yield subelement
else:
yield element
if __name__ == '__main__':
with open('data/rosalind_grep.txt') as input_data:
k_mers = [line.strip() for line in input_data.readlines()]
# Create the edges of the De Bruijn Graph.
k = len(k_mers[0])
edge = lambda elmt: [elmt[0:k-1],elmt[1:k]]
DBG_edges = [edge(elmt) for elmt in k_mers[1:]]
# Get the circular strings. Flatten and cut the coverings output appropriately.
# Initiate the coverings with k_mers[0] since we want the circular coverings to start with the first element.
circular_strings = [circular[:len(k_mers)] for circular in set(flatten(coverings(k_mers[0], DBG_edges, k)))]
# Print and save the output.
print '\n'.join(circular_strings)
with open('output/097_GREP.txt', 'w') as output_data:
output_data.write('\n'.join(circular_strings))