-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathPPO_jssp_multiInstances.py
300 lines (263 loc) · 12.6 KB
/
PPO_jssp_multiInstances.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from mb_agg import *
from agent_utils import eval_actions
from agent_utils import select_action
from models.actor_critic import ActorCritic
from copy import deepcopy
import torch
import time
import torch.nn as nn
import numpy as np
from Params import configs
from validation import validate
device = torch.device(configs.device)
class Memory:
def __init__(self):
self.adj_mb = []
self.fea_mb = []
self.candidate_mb = []
self.mask_mb = []
self.a_mb = []
self.r_mb = []
self.done_mb = []
self.logprobs = []
def clear_memory(self):
del self.adj_mb[:]
del self.fea_mb[:]
del self.candidate_mb[:]
del self.mask_mb[:]
del self.a_mb[:]
del self.r_mb[:]
del self.done_mb[:]
del self.logprobs[:]
class PPO:
def __init__(self,
lr,
gamma,
k_epochs,
eps_clip,
n_j,
n_m,
num_layers,
neighbor_pooling_type,
input_dim,
hidden_dim,
num_mlp_layers_feature_extract,
num_mlp_layers_actor,
hidden_dim_actor,
num_mlp_layers_critic,
hidden_dim_critic,
):
self.lr = lr
self.gamma = gamma
self.eps_clip = eps_clip
self.k_epochs = k_epochs
self.policy = ActorCritic(n_j=n_j,
n_m=n_m,
num_layers=num_layers,
learn_eps=False,
neighbor_pooling_type=neighbor_pooling_type,
input_dim=input_dim,
hidden_dim=hidden_dim,
num_mlp_layers_feature_extract=num_mlp_layers_feature_extract,
num_mlp_layers_actor=num_mlp_layers_actor,
hidden_dim_actor=hidden_dim_actor,
num_mlp_layers_critic=num_mlp_layers_critic,
hidden_dim_critic=hidden_dim_critic,
device=device)
self.policy_old = deepcopy(self.policy)
'''self.policy.load_state_dict(
torch.load(path='./{}.pth'.format(str(n_j) + '_' + str(n_m) + '_' + str(1) + '_' + str(99))))'''
self.policy_old.load_state_dict(self.policy.state_dict())
self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=lr)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer,
step_size=configs.decay_step_size,
gamma=configs.decay_ratio)
self.V_loss_2 = nn.MSELoss()
def update(self, memories, n_tasks, g_pool):
vloss_coef = configs.vloss_coef
ploss_coef = configs.ploss_coef
entloss_coef = configs.entloss_coef
rewards_all_env = []
adj_mb_t_all_env = []
fea_mb_t_all_env = []
candidate_mb_t_all_env = []
mask_mb_t_all_env = []
a_mb_t_all_env = []
old_logprobs_mb_t_all_env = []
# store data for all env
for i in range(len(memories)):
rewards = []
discounted_reward = 0
for reward, is_terminal in zip(reversed(memories[i].r_mb), reversed(memories[i].done_mb)):
if is_terminal:
discounted_reward = 0
discounted_reward = reward + (self.gamma * discounted_reward)
rewards.insert(0, discounted_reward)
rewards = torch.tensor(rewards, dtype=torch.float).to(device)
rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-5)
rewards_all_env.append(rewards)
# process each env data
adj_mb_t_all_env.append(aggr_obs(torch.stack(memories[i].adj_mb).to(device), n_tasks))
fea_mb_t = torch.stack(memories[i].fea_mb).to(device)
fea_mb_t = fea_mb_t.reshape(-1, fea_mb_t.size(-1))
fea_mb_t_all_env.append(fea_mb_t)
candidate_mb_t_all_env.append(torch.stack(memories[i].candidate_mb).to(device).squeeze())
mask_mb_t_all_env.append(torch.stack(memories[i].mask_mb).to(device).squeeze())
a_mb_t_all_env.append(torch.stack(memories[i].a_mb).to(device).squeeze())
old_logprobs_mb_t_all_env.append(torch.stack(memories[i].logprobs).to(device).squeeze().detach())
# get batch argument for net forwarding: mb_g_pool is same for all env
mb_g_pool = g_pool_cal(g_pool, torch.stack(memories[0].adj_mb).to(device).shape, n_tasks, device)
# Optimize policy for K epochs:
for _ in range(self.k_epochs):
loss_sum = 0
vloss_sum = 0
for i in range(len(memories)):
pis, vals = self.policy(x=fea_mb_t_all_env[i],
graph_pool=mb_g_pool,
adj=adj_mb_t_all_env[i],
candidate=candidate_mb_t_all_env[i],
mask=mask_mb_t_all_env[i],
padded_nei=None)
logprobs, ent_loss = eval_actions(pis.squeeze(), a_mb_t_all_env[i])
ratios = torch.exp(logprobs - old_logprobs_mb_t_all_env[i].detach())
advantages = rewards_all_env[i] - vals.view(-1).detach()
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages
v_loss = self.V_loss_2(vals.squeeze(), rewards_all_env[i])
p_loss = - torch.min(surr1, surr2).mean()
ent_loss = - ent_loss.clone()
loss = vloss_coef * v_loss + ploss_coef * p_loss + entloss_coef * ent_loss
loss_sum += loss
vloss_sum += v_loss
self.optimizer.zero_grad()
loss_sum.mean().backward()
self.optimizer.step()
# Copy new weights into old policy:
self.policy_old.load_state_dict(self.policy.state_dict())
if configs.decayflag:
self.scheduler.step()
return loss_sum.mean().item(), vloss_sum.mean().item()
def main():
from JSSP_Env import SJSSP
envs = [SJSSP(n_j=configs.n_j, n_m=configs.n_m) for _ in range(configs.num_envs)]
from uniform_instance_gen import uni_instance_gen
data_generator = uni_instance_gen
dataLoaded = np.load('./DataGen/generatedData' + str(configs.n_j) + '_' + str(configs.n_m) + '_Seed' + str(configs.np_seed_validation) + '.npy')
vali_data = []
for i in range(dataLoaded.shape[0]):
vali_data.append((dataLoaded[i][0], dataLoaded[i][1]))
torch.manual_seed(configs.torch_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(configs.torch_seed)
np.random.seed(configs.np_seed_train)
memories = [Memory() for _ in range(configs.num_envs)]
ppo = PPO(configs.lr, configs.gamma, configs.k_epochs, configs.eps_clip,
n_j=configs.n_j,
n_m=configs.n_m,
num_layers=configs.num_layers,
neighbor_pooling_type=configs.neighbor_pooling_type,
input_dim=configs.input_dim,
hidden_dim=configs.hidden_dim,
num_mlp_layers_feature_extract=configs.num_mlp_layers_feature_extract,
num_mlp_layers_actor=configs.num_mlp_layers_actor,
hidden_dim_actor=configs.hidden_dim_actor,
num_mlp_layers_critic=configs.num_mlp_layers_critic,
hidden_dim_critic=configs.hidden_dim_critic)
g_pool_step = g_pool_cal(graph_pool_type=configs.graph_pool_type,
batch_size=torch.Size([1, configs.n_j*configs.n_m, configs.n_j*configs.n_m]),
n_nodes=configs.n_j*configs.n_m,
device=device)
# training loop
log = []
validation_log = []
optimal_gaps = []
optimal_gap = 1
record = 100000
for i_update in range(configs.max_updates):
t3 = time.time()
ep_rewards = [0 for _ in range(configs.num_envs)]
adj_envs = []
fea_envs = []
candidate_envs = []
mask_envs = []
for i, env in enumerate(envs):
adj, fea, candidate, mask = env.reset(data_generator(n_j=configs.n_j, n_m=configs.n_m, low=configs.low, high=configs.high))
adj_envs.append(adj)
fea_envs.append(fea)
candidate_envs.append(candidate)
mask_envs.append(mask)
ep_rewards[i] = - env.initQuality
# rollout the env
while True:
fea_tensor_envs = [torch.from_numpy(np.copy(fea)).to(device) for fea in fea_envs]
adj_tensor_envs = [torch.from_numpy(np.copy(adj)).to(device).to_sparse() for adj in adj_envs]
candidate_tensor_envs = [torch.from_numpy(np.copy(candidate)).to(device) for candidate in candidate_envs]
mask_tensor_envs = [torch.from_numpy(np.copy(mask)).to(device) for mask in mask_envs]
with torch.no_grad():
action_envs = []
a_idx_envs = []
for i in range(configs.num_envs):
pi, _ = ppo.policy_old(x=fea_tensor_envs[i],
graph_pool=g_pool_step,
padded_nei=None,
adj=adj_tensor_envs[i],
candidate=candidate_tensor_envs[i].unsqueeze(0),
mask=mask_tensor_envs[i].unsqueeze(0))
action, a_idx = select_action(pi, candidate_envs[i], memories[i])
action_envs.append(action)
a_idx_envs.append(a_idx)
adj_envs = []
fea_envs = []
candidate_envs = []
mask_envs = []
# Saving episode data
for i in range(configs.num_envs):
memories[i].adj_mb.append(adj_tensor_envs[i])
memories[i].fea_mb.append(fea_tensor_envs[i])
memories[i].candidate_mb.append(candidate_tensor_envs[i])
memories[i].mask_mb.append(mask_tensor_envs[i])
memories[i].a_mb.append(a_idx_envs[i])
adj, fea, reward, done, candidate, mask = envs[i].step(action_envs[i].item())
adj_envs.append(adj)
fea_envs.append(fea)
candidate_envs.append(candidate)
mask_envs.append(mask)
ep_rewards[i] += reward
memories[i].r_mb.append(reward)
memories[i].done_mb.append(done)
if envs[0].done():
break
for j in range(configs.num_envs):
ep_rewards[j] -= envs[j].posRewards
loss, v_loss = ppo.update(memories, configs.n_j*configs.n_m, configs.graph_pool_type)
for memory in memories:
memory.clear_memory()
mean_rewards_all_env = sum(ep_rewards) / len(ep_rewards)
log.append([i_update, mean_rewards_all_env])
if (i_update + 1) % 100 == 0:
file_writing_obj = open('./' + 'log_' + str(configs.n_j) + '_' + str(configs.n_m) + '_' + str(configs.low) + '_' + str(configs.high) + '.txt', 'w')
file_writing_obj.write(str(log))
# log results
print('Episode {}\t Last reward: {:.2f}\t Mean_Vloss: {:.8f}'.format(
i_update + 1, mean_rewards_all_env, v_loss))
# validate and save use mean performance
t4 = time.time()
if (i_update + 1) % 100 == 0:
vali_result = - validate(vali_data, ppo.policy).mean()
validation_log.append(vali_result)
if vali_result < record:
torch.save(ppo.policy.state_dict(), './{}.pth'.format(
str(configs.n_j) + '_' + str(configs.n_m) + '_' + str(configs.low) + '_' + str(configs.high)))
record = vali_result
print('The validation quality is:', vali_result)
file_writing_obj1 = open(
'./' + 'vali_' + str(configs.n_j) + '_' + str(configs.n_m) + '_' + str(configs.low) + '_' + str(configs.high) + '.txt', 'w')
file_writing_obj1.write(str(validation_log))
t5 = time.time()
# print('Training:', t4 - t3)
# print('Validation:', t5 - t4)
if __name__ == '__main__':
total1 = time.time()
main()
total2 = time.time()
# print(total2 - total1)