-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_rfqi.py
269 lines (246 loc) · 10.4 KB
/
train_rfqi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import torch
import time
import gym
import os
import imageio
from gym import spaces
import argparse
from torch.utils.tensorboard import SummaryWriter
from data_container import DATA
from rfqi import RFQI
def get_action_type(action_space):
"""
Method to get the action type to choose prob. dist.
to sample actions from NN logits output.
"""
if isinstance(action_space, spaces.Box):
shape = action_space.shape
assert len(shape) == 1
if shape[0] == 1:
return 'continuous'
else:
return 'multi_continuous'
elif isinstance(action_space, spaces.Discrete):
return 'discrete'
elif isinstance(action_space, spaces.MultiDiscrete):
return 'multi_discrete'
elif isinstance(action_space, spaces.MultiBinary):
return 'multi_binary'
else:
raise NotImplementedError
def eval_policy(policy, env_name, eval_episodes=10):
rewards = []
env = gym.make(env_name)
env_action_type = get_action_type(env.action_space)
for _ in range(eval_episodes):
state, done = env.reset(seed=np.random.randint(100000)), False
eps_reward = 0.0
while not done:
action = policy.select_action(np.array(state))
if env_action_type == 'discrete':
action = np.rint(action[0]).astype(int)
elif env_action_type == 'continuous':
action = action[0]
else:
pass
if 'FrozenLake' in env_name:
action = int(action)
state, reward, done, _ = env.step(action)
eps_reward += reward
rewards.append(eps_reward)
avg, std = np.average(rewards), np.std(rewards)
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes")
print(rewards)
print("---------------------------------------")
return avg, std
def generate_gif(policy, env_name, video_path):
images = []
env = gym.make(env_name)
state = env.reset()
img = env.render(mode='rgb_array')
done = False
while not done:
images.append(img)
action = policy.select_action(np.array(state))
if env_action_type == 'discrete':
action = np.rint(action[0]).astype(int)
elif env_action_type == 'continuous':
action = action[0]
else:
pass
state, reward, done, info = env.step(action)
img = env.render(mode='rgb_array')
imageio.mimsave(video_path,
[np.array(img) for i, img in enumerate(images) if i%2 == 0],
fps=29)
def save_policy(policy, save_path):
policy.actor.save(f'{save_path}_actor')
policy.critic.save(f'{save_path}_critic')
policy.vae.save(f'{save_path}_vae')
def train_rfqi(state_dim, action_dim, min_action, max_action, paths,
env_action_type, args):
# prep overhead
# parse paths
data_path = paths['data_path']
log_path = f"./logs/{paths['save_path']}"
save_path = f"./models/{paths['save_path']}"
video_path = f"./videos/{paths['save_path']}.gif"
# dataset
data = DATA(state_dim, action_dim, args.device)
data.load(data_path, args.data_size)
writer = SummaryWriter(log_path)
# initialize policy
policy = RFQI(state_dim, action_dim, min_action, max_action, args.device,
env_action_type, adam_lr=args.adam_lr, adam_eps=args.adam_eps,
actor_lr=args.actor_lr, critic_lr=args.critic_lr,
rho=args.rho, gamma=args.gamma, tau=args.tau,
lmbda=args.lmbda, phi=args.phi)
# train robust FQI
trn_iters = 0
max_policy_value = -np.inf
while trn_iters < args.max_trn_steps:
# eval. policy and log rewards
with torch.no_grad():
avg, std = eval_policy(policy, args.env,
eval_episodes=args.eval_episodes)
# log tensorboard
writer.add_scalar("eval reward", avg, trn_iters)
writer.add_scalar("eval reward std", std, trn_iters)
writer.flush()
if avg > max_policy_value:
save_policy(policy, save_path)
if 'FrozenLake' not in args.env and args.video == 'True':
generate_gif(policy, args.env, video_path)
max_policy_value = avg
# step
policy.train(data, int(args.eval_freq), batch_size=args.batch_size,
writer=writer, log_base=trn_iters)
# update steps
trn_iters += args.eval_freq
writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# epsilon used to generate data
parser.add_argument('--data_eps', default=0.5, type=float)
# policy used to generate data
parser.add_argument('--gendata_pol', default='dqn', type=str)
parser.add_argument('--env', default='CartPole-v0', type=str)
parser.add_argument('--max_trn_steps', default=5e5, type=float)
parser.add_argument('--eval_freq', default=1e3, type=float)
parser.add_argument('--eval_episodes', default=10, type=int)
parser.add_argument('--video', default='False', type=str)
parser.add_argument('--seed', default=1024, type=int)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--data_size', default=1e6, type=int)
parser.add_argument('--batch_size', default=1e3, type=int)
# epsilon in Adam*
parser.add_argument('--adam_eps', default=1e-6, type=float)
# Adam stepsize*
parser.add_argument('--adam_lr', default=3e-4, type=float)
# actor lr*
parser.add_argument('--actor_lr', default=3e-4, type=float)
# critic lr*
parser.add_argument('--critic_lr', default=1e-3, type=float)
parser.add_argument('--rho', default=0.5, type=float)
parser.add_argument('--gamma', default=0.99, type=float)
parser.add_argument('--tau', default=0.005, type=float)
parser.add_argument('--lmbda', default=0.75, type=float)
parser.add_argument('--phi', default=0.1, type=float)
parser.add_argument('--comment', default='', type=str)
# use d4rl dataset
parser.add_argument("--d4rl", default='False', type=str)
parser.add_argument("--d4rl_v2", default='False', type=str)
parser.add_argument("--d4rl_expert", default='False', type=str)
# use mixed dataset
parser.add_argument("--mixed", default='False', type=str)
args = parser.parse_args()
# make folders to dump results
if not os.path.exists("./logs"):
os.makedirs("./logs")
if not os.path.exists("./models"):
os.makedirs("./models")
if not os.path.exists("./videos"):
os.makedirs("./videos")
env = gym.make(args.env)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# determine action dimension, action limits
env_action_type = get_action_type(env.action_space)
if env_action_type == 'continuous':
action_dim = 1
max_action = env.action_space.high
min_action = env.action_space.low
elif env_action_type == 'discrete':
action_dim = 1
max_action = env.action_space.n - 1
min_action = 0
elif env_action_type == 'multi_continuous':
action_dim = env.action_space.shape[0]
max_action = env.action_space.high
min_action = env.action_space.low
elif env_action_type == 'multi_discrete':
action_dim = env.action_space.shape[0]
max_action = env.action_space.nvec.max()
min_action = env.action_space.nvec.min()
elif env_action_type == 'multi_binary':
action_dim = env.actoin_space.n
max_action = 1
min_action = 0
else:
raise NotImplementedError
# determine state dimensions
if isinstance(env.observation_space, spaces.Discrete):
state_dim = 1
max_state = env.observation_space.n - 1
else:
state_dim = env.observation_space.shape[0]
max_state = np.inf
# check device
if args.device not in ['cpu', 'cuda', 'cuda:0', 'cuda:1', 'auto']:
raise NotImplementedError
# check d4rl option and mixed option
# determine data_path, log_path and save_path
if args.d4rl == 'False' and args.mixed == 'False':
data_path = f'offline_data/{args.env}_{args.gendata_pol}_e{args.data_eps}'
save_path = f'RFQI_{args.env}_rho{args.rho}_dataeps{args.data_eps}_datapol{args.gendata_pol}{args.comment}'
elif args.d4rl == 'True' and args.mixed == 'False':
env_subname = args.env[0:args.env.find('-')].lower()
data_path = f'offline_data/d4rl-{env_subname}'
save_path = f'RFQI_{args.env}_rho{args.rho}_d4rl'
if args.d4rl_expert == 'True':
data_path += '-expert'
save_path += '_expert'
else:
data_path += '-medium'
if args.d4rl_v2 == 'False':
data_path += '-v0'
else:
data_path += '-v2'
save_path += args.comment
elif args.d4rl == 'False' and args.mixed == 'True':
data_path = f'offline_data/{args.env}_{args.gendata_pol}_mixed_e{args.data_eps}'
save_path = f'RFQI_mixed_{args.env}_rho{args.rho}_dataeps{args.data_eps}_datapol{args.gendata_pol}{args.comment}'
else:
raise NotImplementedError
paths = dict(data_path=data_path, save_path=save_path)
print("=========================================================")
print(f'===============Training RFQI on {args.env}==============')
print(f'{args.env} attributes: max_action={max_action}')
print(f' min_action={min_action}')
print(f' action_dim={action_dim}')
print(f' env action type is {env_action_type}')
print(f'Training attributes: using device: {args.device}')
print(f' data path: {data_path}')
if args.d4rl == 'False':
print(f' using data generated by: {args.gendata_pol}')
else:
print(f' using d4rl data')
print(f' Adam learning rate: {args.adam_lr}')
print(f' Adam epsilon: {args.adam_eps}')
print(f' actor learning rate: {args.actor_lr}')
print(f' critic learning rate: {args.critic_lr}')
print("=========================================================")
train_rfqi(state_dim, action_dim, min_action, max_action, paths,
env_action_type, args)