-
Notifications
You must be signed in to change notification settings - Fork 3
/
fqi.py
355 lines (282 loc) · 13.6 KB
/
fqi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def add_gaussian_noise(actions, max_action, std):
return (
actions
+ max_action * std * torch.randn_like(actions)
).clamp(-max_action, max_action)
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action, phi=0.05):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, action_dim)
self.max_action = max_action
self.phi = phi
def forward(self, state, action):
a = F.relu(self.l1(torch.cat([state, action], 1)))
a = F.relu(self.l2(a))
a = self.phi * self.max_action * torch.tanh(self.l3(a))
return (a + action).clamp(-self.max_action, self.max_action)
def save(self, filename):
torch.save(self.state_dict(), filename)
def load(self, filename, device='cpu'):
self.to(device)
self.load_state_dict(torch.load(filename,
map_location=torch.device(device)))
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, 1)
self.l4 = nn.Linear(state_dim + action_dim, 400)
self.l5 = nn.Linear(400, 300)
self.l6 = nn.Linear(300, 1)
def forward(self, state, action):
q1 = F.relu(self.l1(torch.cat([state, action], 1)))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(torch.cat([state, action], 1)))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def q1(self, state, action):
q1 = F.relu(self.l1(torch.cat([state, action], 1)))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
def save(self, filename):
torch.save(self.state_dict(), filename)
def load(self, filename, device='cpu'):
self.to(device)
self.load_state_dict(torch.load(filename,
map_location=torch.device(device)))
# Vanilla Variational Auto-Encoder
class VAE(nn.Module):
def __init__(self, state_dim, action_dim, latent_dim, max_action, device):
super(VAE, self).__init__()
self.e1 = nn.Linear(state_dim + action_dim, 750)
self.e2 = nn.Linear(750, 750)
self.mean = nn.Linear(750, latent_dim)
self.log_std = nn.Linear(750, latent_dim)
self.d1 = nn.Linear(state_dim + latent_dim, 750)
self.d2 = nn.Linear(750, 750)
self.d3 = nn.Linear(750, action_dim)
self.max_action = max_action
self.latent_dim = latent_dim
self.device = device
def forward(self, state, action):
z = F.relu(self.e1(torch.cat([state, action], 1)))
z = F.relu(self.e2(z))
mean = self.mean(z)
# Clamped for numerical stability
log_std = self.log_std(z).clamp(-4, 15)
std = torch.exp(log_std)
z = mean + std * torch.randn_like(std)
u = self.decode(state, z)
return u, mean, std
def decode(self, state, z=None):
# When sampling from the VAE, the latent vector is clipped to [-0.5, 0.5]
if z is None:
z = torch.randn((state.shape[0], self.latent_dim)).to(self.device).clamp(-0.5, 0.5)
a = F.relu(self.d1(torch.cat([state, z], 1)))
a = F.relu(self.d2(a))
return self.max_action * torch.tanh(self.d3(a))
def save(self, filename):
torch.save(self.state_dict(), filename)
def load(self, filename, device='cpu'):
self.to(device)
self.load_state_dict(torch.load(filename,
map_location=torch.device(device)))
class VAE_state(nn.Module):
def __init__(self, state_dim, latent_dim, max_state, device):
super(VAE_state, self).__init__()
self.e1 = nn.Linear(state_dim, 750)
self.e2 = nn.Linear(750, 750)
self.mean = nn.Linear(750, latent_dim)
self.log_std = nn.Linear(750, latent_dim)
self.d1 = nn.Linear(latent_dim, 750)
self.d2 = nn.Linear(750, 750)
self.d3 = nn.Linear(750, state_dim)
self.max_state = max_state
self.latent_dim = latent_dim
self.device = device
def forward(self, state):
z = F.relu(self.e1(state))
z = F.relu(self.e2(z))
mean = self.mean(z)
# Clamped for numerical stability
log_std = self.log_std(z).clamp(-4, 15)
std = torch.exp(log_std)
z = mean + std * torch.randn_like(std)
u = self.decode(state.shape[0], z)
return u, mean, std
def decode(self, batch_size, z=None):
# When sampling from the VAE, the latent vector is clipped to [-0.5, 0.5]
if z is None:
z = torch.randn((batch_size, self.latent_dim)).to(self.device).clamp(-0.5, 0.5)
s = F.relu(self.d1(z))
s = F.relu(self.d2(s))
if self.max_state is None:
return self.d3(s)
else:
return self.max_state * torch.tanh(self.d3(s))
def save(self, filename):
torch.save(self.state_dict(), filename)
def load(self, filename, device='cpu'):
self.to(device)
self.load_state_dict(torch.load(filename,
map_location=torch.device(device)))
class PQL_BCQ(object):
def __init__(self, state_dim, action_dim, max_state, min_action, max_action,
device, discount=0.99, tau=0.005, lmbda=0.75,
phi=0.05, n_action=100, n_action_execute=100,
backup="QL", ql_noise=0.0,
actor_lr=1e-3, beta=-0.4, vmin=0):
# Add on - need a tensor to clamp actions at:
# 1. Gaussian noise
# 2. Actor action forward
# 3. VAE action (visitation) output
# 4. model predict action
self.max_action = torch.tensor(max_action, dtype=torch.float,
device=device)
self.min_action = torch.tensor(min_action, dtype=torch.float,
device=device)
self.actor = Actor(state_dim, action_dim, self.max_action, phi).to(device)
self.actor_target = copy.deepcopy(self.actor)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=1e-3)
# define VAE action (visitation)
# latent_dim = action_dim * 2
self.vae = VAE(state_dim, action_dim, action_dim * 2, self.max_action, device).to(device)
self.vae_optimizer = torch.optim.Adam(self.vae.parameters())
# define VAE state (visitation)
# latent_dim = state_dim * 2
self.vae2 = VAE_state(state_dim, state_dim * 2, max_state, device).to(device)
self.vae2_optimizer = torch.optim.Adam(self.vae2.parameters())
self.action_dim = action_dim
self.discount = discount
self.tau = tau
self.lmbda = lmbda
self.device = device
self.beta = beta
self.n_action = n_action
self.n_action_execute = n_action_execute
self.backup = backup
self.ql_noise = ql_noise
self.vmin = vmin
def select_action(self, state):
with torch.no_grad():
state = torch.FloatTensor(state.reshape(1, -1)).repeat(self.n_action_execute, 1).to(self.device)
action = self.actor(state, self.vae.decode(state))
q1 = self.critic.q1(state, action)
ind = q1.argmax(0)
# add on properly clamp output action
res = action[ind]
res = torch.clamp(res, self.min_action, self.max_action)
return res.cpu().data.numpy().flatten()
def train_vae(self, replay_buffer, iterations, batch_size=100):
scores = []
for it in range(iterations):
# Sample replay buffer / batch
state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
recon, mean, std = self.vae2(state)
recon_loss = F.mse_loss(recon, state)
KL_loss = -0.5 * (1 + torch.log(std.pow(2)) - mean.pow(2) - std.pow(2)).mean()
vae_loss = recon_loss + 0.5 * KL_loss
scores.append(vae_loss.item())
self.vae2_optimizer.zero_grad()
vae_loss.backward()
self.vae2_optimizer.step()
recon, mean, std = self.vae2(next_state)
recon_loss = F.mse_loss(recon, next_state)
KL_loss = -0.5 * (1 + torch.log(std.pow(2)) - mean.pow(2) - std.pow(2)).mean()
vae_loss = recon_loss + 0.5 * KL_loss
scores.append(vae_loss.item())
self.vae2_optimizer.zero_grad()
vae_loss.backward()
self.vae2_optimizer.step()
return np.mean(scores)
def train_action_vae(self, replay_buffer, iterations, batch_size=100):
for it in range(iterations):
state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
# Variational Auto-Encoder Training
recon, mean, std = self.vae(state, action)
recon_loss = F.mse_loss(recon, action)
KL_loss = -0.5 * (1 + torch.log(std.pow(2)) - mean.pow(2) - std.pow(2)).mean()
vae_loss = recon_loss + 0.5 * KL_loss
self.vae_optimizer.zero_grad()
vae_loss.backward()
self.vae_optimizer.step()
def test_vae(self, replay_buffer, batch_size=1000):
state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
recon, mean, std = self.vae2(next_state)
recon_loss = ((recon - next_state) ** 2).mean(dim=1)
KL_loss = -0.5 * (1 + torch.log(std.pow(2)) - mean.pow(2) - std.pow(2)).mean(dim=1)
vae_loss = recon_loss + 0.5 * KL_loss
return -vae_loss.detach().cpu().numpy()
def train(self, replay_buffer, iterations, batch_size=100):
mean_scores = []
for it in range(iterations):
# Sample replay buffer / batch
state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
# Training action vae
recon, mean, std = self.vae(state, action)
recon_loss = F.mse_loss(recon, action)
KL_loss = -0.5 * (1 + torch.log(std.pow(2)) - mean.pow(2) - std.pow(2)).mean()
vae_loss = recon_loss + 0.5 * KL_loss
self.vae_optimizer.zero_grad()
vae_loss.backward()
self.vae_optimizer.step()
# Critic Training
with torch.no_grad():
# Duplicate next state 10 times
next_state = torch.repeat_interleave(next_state, self.n_action, 0)
# Compute value of perturbed actions sampled from the VAE
if self.backup == "QL":
target_Q1, target_Q2 = self.critic_target(next_state, add_gaussian_noise(self.vae.decode(next_state), self.max_action, self.ql_noise))
else:
target_Q1, target_Q2 = self.critic_target(next_state, self.actor_target(next_state, self.vae.decode(next_state)))
# Soft Clipped Double Q-learning
target_Q = self.lmbda * torch.min(target_Q1, target_Q2) + (1. - self.lmbda) * torch.max(target_Q1,
target_Q2)
# Take max over each action sampled from the VAE
target_Q = target_Q.reshape(batch_size, -1).max(1)[0].reshape(-1, 1)
if self.beta < 0:
recon, mean, std = self.vae2(next_state)
recon_loss = ((recon - next_state) ** 2).mean(dim=1)
KL_loss = -0.5 * (1 + torch.log(std.pow(2)) - mean.pow(2) - std.pow(2)).mean(dim=1)
score = -recon_loss - 0.5 * KL_loss
score = score.reshape(batch_size, -1).mean(dim=1, keepdim=True)
score = torch.sigmoid(100 * (score - self.beta))
mean_scores.append(score.mean().item())
else:
score = 1
target_Q = reward + not_done * score * self.discount * target_Q + not_done * self.discount * (1 - score) * self.vmin
current_Q1, current_Q2 = self.critic(state, action)
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Pertubation Model / Action Training
sampled_actions = self.vae.decode(state)
perturbed_actions = self.actor(state, sampled_actions)
# Update through DPG
actor_loss = -(self.critic.q1(state, perturbed_actions)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update Target Networks
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
# print(score)
print("Average state filter score:", np.mean(mean_scores))
return mean_scores