-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLLT.py
69 lines (53 loc) · 1.95 KB
/
LLT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# -*- coding: utf-8 -*-
import numpy as np
from scipy import interpolate, integrate
import matplotlib.pyplot as plt
class Wing:
# This class contains the wing specifications
def __init__(self, c, b, alpha, alpha_g, alpha_0):
self.c = c
self.b = b
self.S = integrate.quad(self.c, -self.b/2, self.b/2)[0]
self.AR = self.b**2 / self.S
self.alpha = alpha
self.alpha_g = alpha_g
self.alpha_0 = alpha_0
def solve_LLT(wing, N):
# solve_LLT computes the lifting line theory parameters
# The function returns the Fourier series amplitudes
#
# ARGUMENTS:
# wing: contains the wing specs
# N: Number of points evaluated on the wing
#
# EXAMPLE: An = solve_LLT(wing, N)
theta = np.linspace(0 + np.pi / (2 * N), np.pi - np.pi / (2 * N), N)
m = np.zeros((N, N), dtype=float)
ang = np.zeros(N, dtype=float)
for i in range(N):
for j in range(1, N*2, 2):
y = -wing.b * np.cos(theta[i]) / 2
if i == 1:
m[i, round((j-1)/2)] = j**2
else:
m[i, round((j-1)/2)] = np.sin(j * theta[i]) * ((2 * wing.b/(np.pi * wing.c(y))) + (j/np.sin(theta[i])))
ang[round((j-1)/2)] = (wing.alpha - wing.alpha_0 + (2 * y / wing.b) * wing.alpha_g) * np.pi / 180
return np.linalg.solve(m, ang)
def gamma(An, b, Uo, N):
# gamma_vec computes the wing circulation distribution
# The function returns the value of gamma in each point of the wing
#
# ARGUMENTS:
# An: Fourier series amplitudes
# b: wing span
# Uo: freestream velocity
# N: Number of points evaluated on the wing
#
# EXAMPLE: Gamma = gamma(An, b, Uo, N)
theta = np.linspace(0 + np.pi / (2 * N), np.pi - np.pi / (2 * N), N)
aux = np.zeros(N, dtype=float)
for i in range(N):
for n in range(N):
aux[i] = aux[i] + An[n] * np.sin((2 * n + 1) * theta[i])
g = 2 * b * Uo * aux
return g