Skip to content

[ICML 2021] Learning to Weight Imperfect Demonstrations

License

Notifications You must be signed in to change notification settings

yunke-wang/WGAIL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

Learning to Weight Imperfect Demonstrations

This repository contains the PyTorch code for the paper "Learning to Weight Imperfect Demonstrations" in ICML 2021. Code for Atari experiments can be found in this repo.

Requirement

  • Python 3.7
  • torch 1.3.1
  • gym 0.15.7
  • mujoco 2.0.2.4
  • numpy 1.16.2

Execute

  • WGAIL
python wgail.py --env Ant-v2 --num-epochs 5000 --traj-size 1000 --stage 2
  • 2IWIL
python 2iwil.py --env Ant-v2 --num-epochs 5000 --traj-size 1000 --stage 2
  • GAIL
python gail.py --env Ant-v2 --num-epochs 5000 --traj-size 1000 --stage 2
  • T-REX
python trpo_irl.py --env Ant-v2 --num-epochs 5000 --reward-path 'reward_model/ant_reward_stage2.pth' --stage 2

The re-implementation of T-REX/D-REX can be found in SAIL.

Acknowledegement

We would like to thank the authors of 2IWIL/IC-GAIL. Our code structure is largely based on their source code.

About

[ICML 2021] Learning to Weight Imperfect Demonstrations

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages