forked from ycjuan/libffm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathffm-train.cpp
173 lines (148 loc) · 5.09 KB
/
ffm-train.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#pragma GCC diagnostic ignored "-Wunused-result"
#include <algorithm>
#include <cstring>
#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>
#include <cstdlib>
#include "ffm.h"
#if defined USEOMP
#include <omp.h>
#endif
using namespace std;
using namespace ffm;
string train_help() {
return string(
"usage: ffm-train [options] training_set_file [model_file]\n"
"\n"
"options:\n"
"-l <lambda>: set regularization parameter (default 0.00002)\n"
"-k <factor>: set number of latent factors (default 4)\n"
"-t <iteration>: set number of iterations (default 15)\n"
"-r <eta>: set learning rate (default 0.2)\n"
"-s <nr_threads>: set number of threads (default 1)\n"
"-p <path>: set path to the validation set\n"
"--quiet: quiet mode (no output)\n"
"--no-norm: disable instance-wise normalization\n"
"--auto-stop: stop at the iteration that achieves the best validation loss (must be used with -p)\n");
}
struct Option {
string tr_path;
string va_path;
string model_path;
ffm_parameter param;
bool quiet = false;
ffm_int nr_threads = 1;
};
string basename(string path) {
const char *ptr = strrchr(&*path.begin(), '/');
if(!ptr)
ptr = path.c_str();
else
ptr++;
return string(ptr);
}
Option parse_option(int argc, char **argv) {
vector<string> args;
for(int i = 0; i < argc; i++)
args.push_back(string(argv[i]));
if(argc == 1)
throw invalid_argument(train_help());
Option opt;
ffm_int i = 1;
for(; i < argc; i++) {
if(args[i].compare("-t") == 0)
{
if(i == argc-1)
throw invalid_argument("need to specify number of iterations after -t");
i++;
opt.param.nr_iters = atoi(args[i].c_str());
if(opt.param.nr_iters <= 0)
throw invalid_argument("number of iterations should be greater than zero");
} else if(args[i].compare("-k") == 0) {
if(i == argc-1)
throw invalid_argument("need to specify number of factors after -k");
i++;
opt.param.k = atoi(args[i].c_str());
if(opt.param.k <= 0)
throw invalid_argument("number of factors should be greater than zero");
} else if(args[i].compare("-r") == 0) {
if(i == argc-1)
throw invalid_argument("need to specify eta after -r");
i++;
opt.param.eta = atof(args[i].c_str());
if(opt.param.eta <= 0)
throw invalid_argument("learning rate should be greater than zero");
} else if(args[i].compare("-l") == 0) {
if(i == argc-1)
throw invalid_argument("need to specify lambda after -l");
i++;
opt.param.lambda = atof(args[i].c_str());
if(opt.param.lambda < 0)
throw invalid_argument("regularization cost should not be smaller than zero");
} else if(args[i].compare("-s") == 0) {
if(i == argc-1)
throw invalid_argument("need to specify number of threads after -s");
i++;
opt.nr_threads = atoi(args[i].c_str());
if(opt.nr_threads <= 0)
throw invalid_argument("number of threads should be greater than zero");
} else if(args[i].compare("-p") == 0) {
if(i == argc-1)
throw invalid_argument("need to specify path after -p");
i++;
opt.va_path = args[i];
} else if(args[i].compare("--no-norm") == 0) {
opt.param.normalization = false;
} else if(args[i].compare("--quiet") == 0) {
opt.quiet = true;
} else if(args[i].compare("--auto-stop") == 0) {
opt.param.auto_stop = true;
} else {
break;
}
}
if(i != argc-2 && i != argc-1)
throw invalid_argument("cannot parse command\n");
opt.tr_path = args[i];
i++;
if(i < argc) {
opt.model_path = string(args[i]);
} else if(i == argc) {
opt.model_path = basename(opt.tr_path) + ".model";
} else {
throw invalid_argument("cannot parse argument");
}
return opt;
}
int train_on_disk(Option opt) {
string tr_bin_path = basename(opt.tr_path) + ".bin";
string va_bin_path = opt.va_path.empty()? "" : basename(opt.va_path) + ".bin";
ffm_read_problem_to_disk(opt.tr_path, tr_bin_path);
if(!opt.va_path.empty())
ffm_read_problem_to_disk(opt.va_path, va_bin_path);
ffm_model model = ffm_train_on_disk(tr_bin_path.c_str(), va_bin_path.c_str(), opt.param);
ffm_save_model(model, opt.model_path);
return 0;
}
int main(int argc, char **argv) {
Option opt;
try {
opt = parse_option(argc, argv);
} catch(invalid_argument &e) {
cout << e.what() << endl;
return 1;
}
if(opt.quiet)
cout.setstate(ios_base::badbit);
if(opt.param.auto_stop && opt.va_path.empty()) {
cout << "To use auto-stop, you need to assign a validation set" << endl;
return 1;
}
#if defined USEOMP
omp_set_num_threads(opt.nr_threads);
#endif
train_on_disk(opt);
return 0;
}