forked from CrawfordGroup/python_code_to_check_C
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCC_Calculator.py
283 lines (212 loc) · 9.72 KB
/
CC_Calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# -*- coding: utf-8 -*-
# #####################################################################
#
#
# Created by: Rachel Glenn
# Date: 12/14/2016
#This is the driver for CC2 or CCSD_Helper and Runge_Kutta to calculate
#the time dependent dipole moment.
#
# First it calculates the converged t1, t2,
# Second the lam1, lam2
# It uses the converged t1, t2, lam1, lam2 to calculate the real-time
# single-electron density matrix
#
########################################################################
import sys
sys.path.insert(0,'./..')
import psi4 as psi4
import numpy as np
from CCSD_Helper import *
from CC2_Helper import CC2_Helper
import pandas as pd
sys.path.append('/home/rglenn/newriver/buildpython/pandas')
########################################################
# Setup
########################################################
class CC_Calculator(object):
def __init__(self, psi, **kwargs):
self.mol = CCSD_Helper(psi)
mol = self.mol
self.ndocc = mol.ndocc
try:
#Start parameters
self.w0 = kwargs['w0'] #frequency of the oscillation
self.A = kwargs['A'] #the amplitude of the electric field
self.t0 = kwargs['t0'] #the start time
self.tf = 10.1 #the stop time, the actual stop time is governed by the timelength of the job
#Unless it completes enough steps to get to tf first.
self.dt = kwargs['dt'] #time step
self.precs = kwargs['precs'] #precision of the t1, t2, l1, l2 amplitudes
except:
pass
def test_MP2(self):
mol = self.mol
scf, MP2, T2 = mol.MP2_E('Test')
return MP2
##############################################
# Time-dependent dipole matrix(CC2/CCSD):
##############################################
def TDCC(self, timeout, CCSD_or_CC2):
if CCSD_or_CC2 == 'CC2':
self.TDCC2(timeout)
elif CCSD_or_CC2 == 'CCSD':
self.TDCCSD(timeout)
else:
print("Error in specifying whether it is a CCSD or CC2 calculation")
print("Correct format is:\nmol.TDCC(stop_time, CCSD)\nwhere CCSD='CCSD' or 'CC2'")
##############################################
# RESTART Time-dependent dipole matrix(CC2/CCSD):
##############################################
def TDCC_restart(self, timeout):
param = pd.read_csv('Parameters.csv')
#Start parameters
w0 = param['w0'][0]#frequency of the oscillation and transition frequency
A = param['A'][0]#the amplitude of the electric field
t0 = param['t0'][0] #the start time
CC2_or_CCSD = param['CCSD_or_CC2'][0]
tf = 50.0 + t0 #the stop time, the actual stop time is governed by the timelength of the job
#Unless it completes enough steps to get to tf first.
dt = param['dt'][0] #time step
t0 = t0 + dt
precs = int(param['precs'][0])
i = int(param['i'][0])
a = int(param['a'][0])
def convert_2data(Filename, i, a):
F = pd.read_csv(Filename,sep="\t",header=None, names=['i', 'a', 'F'])
#F = np.genfromtxt(("\t".join(i) for i in csv.reader(open(Filename))), delimiter="\t")
Freshape = np.zeros(shape=(i, a))
x = np.around(F['i'].tolist())
y = np.around(F['a'].tolist())
Fa = F['F'].tolist()
for n in range(len(Fa)):
ni = int(x[n])
na = int(y[n])
Freshape[ni][na] = Fa[n]
return Freshape
def convert_4data(Filename, i, a):
F = pd.read_csv(Filename,sep="\t",header=None, names=['i', 'j', 'a', 'b', 'F'])
#F = np.genfromtxt(("\t".join(i) for i in csv.reader(open(Filename))), delimiter="\t")
Freshape = np.zeros(shape=(i, i, a, a))
x = np.around(F['i'].tolist())
y = np.around(F['j'].tolist())
t = np.around(F['a'].tolist())
z = np.around(F['b'].tolist())
Fa = F['F'].tolist()
for n in range(len(Fa)):
ni = int(x[n])
nj = int(y[n])
na = int(t[n])
nb = int(z[n])
Freshape[ni][nj][na][nb] = Fa[n]
return Freshape
#######The data for t1 is "i", "a", "t1-flattend"############################
t1_real = convert_2data("t1_real.dat", i, a)
t1_imag = convert_2data("t1_imag.dat", i, a)
t1 = t1_real + 1.0*1j*t1_imag
lam1_real = convert_2data("lam1_real.dat", i, a)
lam1_imag = convert_2data("lam1_imag.dat", i, a)
lam1 = lam1_real + 1.0*1j*lam1_imag
t2_real = convert_4data("t2_real.dat", i, a)
t2_imag = convert_4data("t2_imag.dat", i, a)
t2 = t2_real + 1.0*1j*t2_imag
lam2_real = convert_4data("lam2_real.dat", i, a)
lam2_imag = convert_4data("lam2_imag.dat", i, a)
lam2 = lam2_real + 1.0*1j*lam2_imag
F_real = convert_2data("F_real.dat", i+a, i+a )
F_imag = convert_2data("F_imag.dat", i+a, i+a)
F = F_real #+ 1.0*1j*F_imag
mol = CCSD_Helper(psi4)
if CC2_or_CCSD == 'CC2':
mol_CC2 = CC2_Helper(psi4)
mol_CC2.Runge_Kutta_solver_CC2(F, t1, t2, lam1, lam2, w0, A, t0, tf, dt, timeout, precs, 'restart')
elif CC2_or_CCSD == 'CCSD':
mol = CCSD_Helper(psi4)
mol.Runge_Kutta_solver(F, t1, t2, lam1, lam2, w0, A, t0, tf, dt, timeout, precs, 'restart')
##############################################
# CCSD--Calculations--
##############################################
def TDCCSD(self, timeout):#T1 equation
mol = CCSD_Helper(psi4)
nmo = mol.nmo
ndocc = mol.ndocc
F = mol.F_MO()
v = 2*(nmo-ndocc)
o = 2*ndocc
psienergy = psi4.energy('CCSD')
##############################################
# t1 and t2 Amplitudes (CCSD):
##############################################
#initialize t1 and t2
scf, MP2, t2 = mol.MP2_E('Test')
t1 = np.zeros( shape=(o, v), dtype=np.longdouble)
print("Escf=", scf)
print("Emp2=", MP2-scf)
print("Etot=", MP2)
maxsize = 7 # number of t1 and t2 to store
maxiter = 40 #max iterations incase it crashes
E_min = 1e-15 # minimum energy to match
CC2_E, t1, t2 = mol.DIIS_solver(t1, t2, F, maxsize, maxiter, E_min)
print("E_ccsd_plugin=", CC2_E + scf)
print("difference between psi4 and plugin=", psienergy.real - (CC2_E + scf))
mol.print_T_amp(t1, t2)
psi4.driver.p4util.compare_values(psi4.energy('CCSD'), CC2_E+scf, 10, 'CCSD Energy')
##############################################
# lam1 and lam2 Amplitudes (CCSD):
##############################################
maxiter = 30
E_min = 1e-15 # minimum energy to match
lam1 = t1
lam2 = t2
pseudo_E, lam1, lam2 = mol.DIIS_solver_Lam(t1, t2, lam1, lam2, F, maxsize, maxiter, E_min)
###Print out the L1 and L2 amplitudes and Pseudo energy
print("E_pseudo_plugin=", pseudo_E)
mol.print_L_amp(lam1, lam2)
##############################################
# Time-dependent dipole matrix(CCSD):
##############################################
mol.Runge_Kutta_solver(F, t1, t2, lam1, lam2, self.w0, \
self.A, self.t0, self.tf, self.dt, timeout, self.precs)
##############################################
# CC2--Calculations--
##############################################
def TDCC2(self, timeout):#T1 equation
mol_CC2 = CC2_Helper(psi4)
nmo = mol_CC2.nmo
ndocc = mol_CC2.ndocc
F = mol_CC2.F_MO()
v = 2*(nmo-ndocc)
o = 2*ndocc
psienergy = psi4.energy('CC2')
##############################################
# t1 and t2 Amplitudes (CC2):
##############################################
#initialize t1 and t2
scf, MP2, t2 = mol_CC2.MP2_E('Test')
t1 = np.zeros( shape=(o, v), dtype=np.longdouble)
print("Escf=", scf)
print("Emp2=", MP2-scf)
print("Etot=", MP2)
maxsize = 7 # number of t1 and t2 to store
maxiter = 40 #max iterations incase it crashes
E_min = 1e-15 # minimum energy to match
CC2_E, t1, t2 = mol_CC2.DIIS_solver_CC2(t1, t2, F, maxsize, maxiter, E_min)
print("E_cc2_plugin=", CC2_E + scf)
print("difference between psi4 and plugin=", psienergy.real - (CC2_E + scf))
mol_CC2.print_T_amp(t1, t2)
psi4.driver.p4util.compare_values(psi4.energy('CC2'), CC2_E+scf, 10, 'CCSD Energy')
##############################################
# lam1 and lam2 Amplitudes (CC2):
##############################################
maxiter = 30
E_min = 1e-15 # minimum energy to match
lam1 = t1
lam2 = t2
pseudo_E, lam1, lam2 = mol_CC2.DIIS_solver_Lam_CC2(t1, t2, lam1, lam2, F, maxsize, maxiter, E_min)
print("E_pseudo_plugin=", pseudo_E)
mol_CC2.print_L_amp(lam1, lam2)
##############################################
# Time-dependent dipole matrix(CC2):
##############################################
mol_CC2.Runge_Kutta_solver_CC2(F, t1, t2, lam1, lam2, \
self.w0, self.A, self.t0, self.tf, self.dt,timeout, self.precs)