-
Notifications
You must be signed in to change notification settings - Fork 0
/
aapm_sin_ncsnpp_gb.py
64 lines (56 loc) · 1.74 KB
/
aapm_sin_ncsnpp_gb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Training NCSN++ on bedroom with VE SDE."""
from default_lsun_configs import get_default_configs
def get_config():
config = get_default_configs()
# training
training = config.training
training.sde = 'vesde'
training.continuous = True
# sampling
sampling = config.sampling
sampling.method = 'pc'
sampling.predictor = 'reverse_diffusion'
sampling.corrector = 'langevin'
# data
data = config.data
data.category = 'SIAT'
# model
model = config.model
model.name = 'ncsnpp'
model.scale_by_sigma = True
model.ema_rate = 0.999
model.normalization = 'GroupNorm'
model.nonlinearity = 'swish'
model.nf = 32
model.ch_mult = (1, 1, 2, 2, 2, 2, 2)
model.num_res_blocks = 2
model.attn_resolutions = (16,)
model.resamp_with_conv = True
model.conditional = True
model.fir = True
model.fir_kernel = [1, 3, 3, 1]
model.skip_rescale = True
model.resblock_type = 'biggan'
model.progressive = 'output_skip'
model.progressive_input = 'input_skip'
model.progressive_combine = 'sum'
model.attention_type = 'ddpm'
model.init_scale = 0.
model.fourier_scale = 16
model.conv_size = 3
return config