-
Notifications
You must be signed in to change notification settings - Fork 0
/
README
25 lines (18 loc) · 966 Bytes
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
docker's environment:(cuda10.2,ubuntu16.04)
docker pull zieghart/base:C10U16_perfect
then:
conda activate ncsn
train:
python main.py --config=aapm_sin_ncsnpp_gb.py --workdir=exp_zl --mode=train --eval_folder=result
test size and gap:
python A_1k_arg_PCsampling_demo.py --size=500 --gpu=0 --gap=60 --useNet=True
test sensor number:
python A_1k_arg_PCsampling_demo.py --size=500 --gpu=0 --gap=60 --ssn=2 --useNet=True
python A_1k_arg_PCsampling_demo.py --size=500 --gpu=0 --gap=60 --ssn=3 --useNet=True
test sparse:
python -u A_1k_arg_PCsampling_demo.py --size=500 --gpu=1 --gap=60 --sparse=6 --useNet=True # means SR = 5/6
python -u A_1k_arg_PCsampling_demo.py --size=500 --gpu=1 --gap=60 --sparse=5 --useNet=True # means SR = 4/5
background_test(for long time test):
nohup python -u A_1k_arg_PCsampling_demo.py --size=500 --gpu=0 --gap=60 > ./records/your_path/S500_G60.out 2>&1 &
if have any questions: