-
Notifications
You must be signed in to change notification settings - Fork 0
/
pi_model.py
79 lines (63 loc) · 2.61 KB
/
pi_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""
@author: Baixu Chen
@contact: [email protected]
"""
from typing import Callable, Optional
import numpy as np
import torch
from torch import nn as nn
def sigmoid_warm_up(current_epoch, warm_up_epochs: int):
"""Exponential warm up function from `Temporal Ensembling for Semi-Supervised Learning
(ICLR 2017) <https://arxiv.org/abs/1610.02242>`_.
"""
assert warm_up_epochs >= 0
if warm_up_epochs == 0:
return 1.0
else:
current_epoch = np.clip(current_epoch, 0.0, warm_up_epochs)
process = 1.0 - current_epoch / warm_up_epochs
return float(np.exp(-5.0 * process * process))
class ConsistencyLoss(nn.Module):
r"""
Consistency loss between two predictions. Given distance measure :math:`D`, predictions :math:`p_1, p_2`,
binary mask :math:`mask`, the consistency loss is
.. math::
D(p_1, p_2) * mask
Args:
distance_measure (callable): Distance measure function.
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``
Inputs:
- p1: the first prediction
- p2: the second prediction
- mask: binary mask. Default: 1. (use all samples when calculating loss)
Shape:
- p1, p2: :math:`(N, C)` where C means the number of classes.
- mask: :math:`(N, )` where N means mini-batch size.
"""
def __init__(self, distance_measure: Callable, reduction: Optional[str] = 'mean'):
super(ConsistencyLoss, self).__init__()
self.distance_measure = distance_measure
self.reduction = reduction
def forward(self, p1: torch.Tensor, p2: torch.Tensor, mask=1.):
cons_loss = self.distance_measure(p1, p2)
cons_loss = cons_loss * mask
if self.reduction == 'mean':
return cons_loss.mean()
elif self.reduction == 'sum':
return cons_loss.sum()
else:
return cons_loss
class L2ConsistencyLoss(ConsistencyLoss):
r"""
L2 consistency loss. Given two predictions :math:`p_1, p_2` and binary mask :math:`mask`, the
L2 consistency loss is
.. math::
\text{MSELoss}(p_1, p_2) * mask
"""
def __init__(self, reduction: Optional[str] = 'mean'):
def l2_distance(p1: torch.Tensor, p2: torch.Tensor):
return ((p1 - p2) ** 2).sum(dim=1)
super(L2ConsistencyLoss, self).__init__(l2_distance, reduction)