-
Notifications
You must be signed in to change notification settings - Fork 0
/
cycada.py
389 lines (346 loc) · 18.5 KB
/
cycada.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""
@author: Junguang Jiang
@contact: [email protected]
"""
import random
import time
import warnings
import sys
import argparse
import itertools
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from torchvision.transforms import ToPILImage, Compose, Lambda
sys.path.append('../../..')
import tllib.translation.cyclegan as cyclegan
from tllib.translation.cyclegan.util import ImagePool, set_requires_grad
from tllib.translation.cycada import SemanticConsistency
import tllib.vision.models.segmentation as models
import tllib.vision.datasets.segmentation as datasets
from tllib.vision.transforms import Denormalize, NormalizeAndTranspose
import tllib.vision.transforms.segmentation as T
from tllib.utils.data import ForeverDataIterator
from tllib.utils.meter import AverageMeter, ProgressMeter
from tllib.utils.logger import CompleteLogger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
train_transform = T.Compose([
T.RandomResizedCrop(size=args.train_size, ratio=args.resize_ratio, scale=(0.5, 1.)),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
source_dataset = datasets.__dict__[args.source]
train_source_dataset = source_dataset(root=args.source_root, transforms=train_transform)
train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True, drop_last=True)
target_dataset = datasets.__dict__[args.target]
train_target_dataset = target_dataset(root=args.target_root, transforms=train_transform)
train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True, drop_last=True)
train_source_iter = ForeverDataIterator(train_source_loader)
train_target_iter = ForeverDataIterator(train_target_loader)
# define networks (both generators and discriminators)
netG_S2T = cyclegan.generator.__dict__[args.netG](ngf=args.ngf, norm=args.norm, use_dropout=False).to(device)
netG_T2S = cyclegan.generator.__dict__[args.netG](ngf=args.ngf, norm=args.norm, use_dropout=False).to(device)
netD_S = cyclegan.discriminator.__dict__[args.netD](ndf=args.ndf, norm=args.norm).to(device)
netD_T = cyclegan.discriminator.__dict__[args.netD](ndf=args.ndf, norm=args.norm).to(device)
# create image buffer to store previously generated images
fake_S_pool = ImagePool(args.pool_size)
fake_T_pool = ImagePool(args.pool_size)
# define optimizer and lr scheduler
optimizer_G = Adam(itertools.chain(netG_S2T.parameters(), netG_T2S.parameters()), lr=args.lr, betas=(args.beta1, 0.999))
optimizer_D = Adam(itertools.chain(netD_S.parameters(), netD_T.parameters()), lr=args.lr, betas=(args.beta1, 0.999))
lr_decay_function = lambda epoch: 1.0 - max(0, epoch - args.epochs) / float(args.epochs_decay)
lr_scheduler_G = LambdaLR(optimizer_G, lr_lambda=lr_decay_function)
lr_scheduler_D = LambdaLR(optimizer_D, lr_lambda=lr_decay_function)
# optionally resume from a checkpoint
if args.resume:
print("Resume from", args.resume)
checkpoint = torch.load(args.resume, map_location='cpu')
netG_S2T.load_state_dict(checkpoint['netG_S2T'])
netG_T2S.load_state_dict(checkpoint['netG_T2S'])
netD_S.load_state_dict(checkpoint['netD_S'])
netD_T.load_state_dict(checkpoint['netD_T'])
optimizer_G.load_state_dict(checkpoint['optimizer_G'])
optimizer_D.load_state_dict(checkpoint['optimizer_D'])
lr_scheduler_G.load_state_dict(checkpoint['lr_scheduler_G'])
lr_scheduler_D.load_state_dict(checkpoint['lr_scheduler_D'])
args.start_epoch = checkpoint['epoch'] + 1
if args.phase == 'test':
transform = T.Compose([
T.Resize(image_size=args.test_input_size),
T.wrapper(cyclegan.transform.Translation)(netG_S2T, device),
])
train_source_dataset.translate(transform, args.translated_root)
return
# define loss function
criterion_gan = cyclegan.LeastSquaresGenerativeAdversarialLoss()
criterion_cycle = nn.L1Loss()
criterion_identity = nn.L1Loss()
criterion_semantic = SemanticConsistency(ignore_index=[args.ignore_label]+train_source_dataset.ignore_classes).to(device)
interp_train = nn.Upsample(size=args.train_size[::-1], mode='bilinear', align_corners=True)
# define segmentation model and predict function
model = models.__dict__[args.arch](num_classes=train_source_dataset.num_classes).to(device)
if args.pretrain:
print("Loading pretrain segmentation model from", args.pretrain)
checkpoint = torch.load(args.pretrain, map_location='cpu')
model.load_state_dict(checkpoint['model'])
model.eval()
cycle_gan_tensor_to_segmentation_tensor = Compose([
Denormalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
Lambda(lambda image: image.mul(255).permute((1, 2, 0))),
NormalizeAndTranspose(),
])
def predict(image):
image = cycle_gan_tensor_to_segmentation_tensor(image.squeeze())
image = image.unsqueeze(dim=0).to(device)
prediction = model(image)
return interp_train(prediction)
# define visualization function
tensor_to_image = Compose([
Denormalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
ToPILImage()
])
decode = train_source_dataset.decode_target
def visualize(image, name, pred=None):
"""
Args:
image (tensor): image in shape 3 x H x W
name: name of the saving image
pred (tensor): predictions in shape C x H x W
"""
tensor_to_image(image).save(logger.get_image_path("{}.png".format(name)))
if pred is not None:
pred = pred.detach().max(dim=0).indices.cpu().numpy()
pred = decode(pred)
pred.save(logger.get_image_path("pred_{}.png".format(name)))
# start training
for epoch in range(args.start_epoch, args.epochs+args.epochs_decay):
logger.set_epoch(epoch)
print(lr_scheduler_G.get_lr())
# train for one epoch
train(train_source_iter, train_target_iter, netG_S2T, netG_T2S, netD_S, netD_T, predict,
criterion_gan, criterion_cycle, criterion_identity, criterion_semantic, optimizer_G, optimizer_D,
fake_S_pool, fake_T_pool, epoch, visualize, args)
# update learning rates
lr_scheduler_G.step()
lr_scheduler_D.step()
# save checkpoint
torch.save(
{
'netG_S2T': netG_S2T.state_dict(),
'netG_T2S': netG_T2S.state_dict(),
'netD_S': netD_S.state_dict(),
'netD_T': netD_T.state_dict(),
'optimizer_G': optimizer_G.state_dict(),
'optimizer_D': optimizer_D.state_dict(),
'lr_scheduler_G': lr_scheduler_G.state_dict(),
'lr_scheduler_D': lr_scheduler_D.state_dict(),
'epoch': epoch,
'args': args
}, logger.get_checkpoint_path(epoch)
)
if args.translated_root is not None:
transform = T.Compose([
T.Resize(image_size=args.test_input_size),
T.wrapper(cyclegan.transform.Translation)(netG_S2T, device),
])
train_source_dataset.translate(transform, args.translated_root)
logger.close()
def train(train_source_iter, train_target_iter, netG_S2T, netG_T2S, netD_S, netD_T, predict,
criterion_gan, criterion_cycle, criterion_identity, criterion_semantic,
optimizer_G, optimizer_D, fake_S_pool, fake_T_pool,
epoch: int, visualize, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses_G_S2T = AverageMeter('G_S2T', ':3.2f')
losses_G_T2S = AverageMeter('G_T2S', ':3.2f')
losses_D_S = AverageMeter('D_S', ':3.2f')
losses_D_T = AverageMeter('D_T', ':3.2f')
losses_cycle_S = AverageMeter('cycle_S', ':3.2f')
losses_cycle_T = AverageMeter('cycle_T', ':3.2f')
losses_identity_S = AverageMeter('idt_S', ':3.2f')
losses_identity_T = AverageMeter('idt_T', ':3.2f')
losses_semantic_S2T = AverageMeter('sem_S2T', ':3.2f')
losses_semantic_T2S = AverageMeter('sem_T2S', ':3.2f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses_G_S2T, losses_G_T2S, losses_D_S, losses_D_T,
losses_cycle_S, losses_cycle_T, losses_identity_S, losses_identity_T,
losses_semantic_S2T, losses_semantic_T2S],
prefix="Epoch: [{}]".format(epoch))
end = time.time()
for i in range(args.iters_per_epoch):
real_S, label_s = next(train_source_iter)
real_T, _ = next(train_target_iter)
real_S = real_S.to(device)
real_T = real_T.to(device)
label_s = label_s.to(device)
# measure data loading time
data_time.update(time.time() - end)
# Compute fake images and reconstruction images.
fake_T = netG_S2T(real_S)
rec_S = netG_T2S(fake_T)
fake_S = netG_T2S(real_T)
rec_T = netG_S2T(fake_S)
# Optimizing generators
# discriminators require no gradients
set_requires_grad(netD_S, False)
set_requires_grad(netD_T, False)
optimizer_G.zero_grad()
# GAN loss D_T(G_S2T(S))
loss_G_S2T = criterion_gan(netD_T(fake_T), real=True)
# GAN loss D_S(G_T2S(B))
loss_G_T2S = criterion_gan(netD_S(fake_S), real=True)
# Cycle loss || G_T2S(G_S2T(S)) - S||
loss_cycle_S = criterion_cycle(rec_S, real_S) * args.trade_off_cycle
# Cycle loss || G_S2T(G_T2S(T)) - T||
loss_cycle_T = criterion_cycle(rec_T, real_T) * args.trade_off_cycle
# Identity loss
# G_S2T should be identity if real_T is fed: ||G_S2T(real_T) - real_T||
identity_T = netG_S2T(real_T)
loss_identity_T = criterion_identity(identity_T, real_T) * args.trade_off_identity
# G_T2S should be identity if real_S is fed: ||G_T2S(real_S) - real_S||
identity_S = netG_T2S(real_S)
loss_identity_S = criterion_identity(identity_S, real_S) * args.trade_off_identity
# Semantic loss
pred_fake_T = predict(fake_T)
pred_real_S = predict(real_S)
loss_semantic_S2T = criterion_semantic(pred_fake_T, label_s) * args.trade_off_semantic
pred_fake_S = predict(fake_S)
pred_real_T = predict(real_T)
loss_semantic_T2S = criterion_semantic(pred_fake_S, pred_real_T.max(1).indices) * args.trade_off_semantic
# combined loss and calculate gradients
loss_G = loss_G_S2T + loss_G_T2S + loss_cycle_S + loss_cycle_T + \
loss_identity_S + loss_identity_T + loss_semantic_S2T + loss_semantic_T2S
loss_G.backward()
optimizer_G.step()
# Optimize discriminator
set_requires_grad(netD_S, True)
set_requires_grad(netD_T, True)
optimizer_D.zero_grad()
# Calculate GAN loss for discriminator D_S
fake_S_ = fake_S_pool.query(fake_S.detach())
loss_D_S = 0.5 * (criterion_gan(netD_S(real_S), True) + criterion_gan(netD_S(fake_S_), False))
loss_D_S.backward()
# Calculate GAN loss for discriminator D_T
fake_T_ = fake_T_pool.query(fake_T.detach())
loss_D_T = 0.5 * (criterion_gan(netD_T(real_T), True) + criterion_gan(netD_T(fake_T_), False))
loss_D_T.backward()
optimizer_D.step()
# measure elapsed time
losses_G_S2T.update(loss_G_S2T.item(), real_S.size(0))
losses_G_T2S.update(loss_G_T2S.item(), real_S.size(0))
losses_D_S.update(loss_D_S.item(), real_S.size(0))
losses_D_T.update(loss_D_T.item(), real_S.size(0))
losses_cycle_S.update(loss_cycle_S.item(), real_S.size(0))
losses_cycle_T.update(loss_cycle_T.item(), real_S.size(0))
losses_identity_S.update(loss_identity_S.item(), real_S.size(0))
losses_identity_T.update(loss_identity_T.item(), real_S.size(0))
losses_semantic_S2T.update(loss_semantic_S2T.item(), real_S.size(0))
losses_semantic_T2S.update(loss_semantic_T2S.item(), real_S.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
for image, prediction, name in zip([real_S, real_T, fake_S, fake_T],
[pred_real_S, pred_real_T, pred_fake_S, pred_fake_T],
["real_S", "real_T", "fake_S", "fake_T"]):
visualize(image[0], "{}_{}".format(i, name), prediction[0])
for image, name in zip([rec_S, rec_T, identity_S, identity_T],
["rec_S", "rec_T", "identity_S", "identity_T"]):
visualize(image[0], "{}_{}".format(i, name))
if __name__ == '__main__':
architecture_names = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])
)
dataset_names = sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
# dataset parameters
parser = argparse.ArgumentParser(description='Cycada for Segmentation Domain Adaptation')
parser.add_argument('source_root', help='root path of the source dataset')
parser.add_argument('target_root', help='root path of the target dataset')
parser.add_argument('-s', '--source', help='source domain(s)')
parser.add_argument('-t', '--target', help='target domain(s)')
parser.add_argument('--resize-ratio', nargs='+', type=float, default=(1.5, 8 / 3.),
help='the resize ratio for the random resize crop')
parser.add_argument('--train-size', nargs='+', type=int, default=(512, 256),
help='the input and output image size during training')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='deeplabv2_resnet101',
choices=architecture_names,
help='backbone architecture: ' +
' | '.join(architecture_names) +
' (default: deeplabv2_resnet101)')
parser.add_argument('--pretrain', type=str, default=None,
help='pretrain checkpoints for segementation model')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
parser.add_argument('--netD', type=str, default='patch',
help='specify discriminator architecture [patch | pixel]. The basic model is a 70x70 PatchGAN.')
parser.add_argument('--netG', type=str, default='unet_256',
help='specify generator architecture [resnet_9 | resnet_6 | unet_256 | unet_128]')
parser.add_argument('--norm', type=str, default='instance',
help='instance normalization or batch normalization [instance | batch | none]')
parser.add_argument("--resume", type=str, default=None,
help="Where restore cyclegan model parameters from.")
parser.add_argument('--trade-off-cycle', type=float, default=10.0, help='trade off for cycle loss')
parser.add_argument('--trade-off-identity', type=float, default=5.0, help='trade off for identity loss')
parser.add_argument('--trade-off-semantic', type=float, default=1.0, help='trade off for semantic loss')
# training parameters
parser.add_argument('-b', '--batch-size', default=1, type=int,
metavar='N',
help='mini-batch size (default: 1)')
parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--epochs-decay', type=int, default=20,
help='number of epochs to linearly decay learning rate to zero')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('-i', '--iters-per-epoch', default=5000, type=int,
help='Number of iterations per epoch')
parser.add_argument('--pool-size', type=int, default=50,
help='the size of image buffer that stores previously generated images')
parser.add_argument('-p', '--print-freq', default=400, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument("--ignore-label", type=int, default=255,
help="The index of the label to ignore during the training.")
parser.add_argument("--log", type=str, default='cycada',
help="Where to save logs, checkpoints and debugging images.")
# test parameters
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test'],
help="When phase is 'test', only test the model.")
parser.add_argument('--translated-root', type=str, default=None,
help="The root to put the translated dataset")
parser.add_argument('--test-input-size', nargs='+', type=int, default=(1024, 512),
help='the input image size during test')
args = parser.parse_args()
main(args)