-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmmt.sh
72 lines (67 loc) · 4.37 KB
/
mmt.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env bash
# Market1501 -> Duke
# step1: pretrain
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s Market1501 -t DukeMTMC -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 0 --log logs/baseline/Market2DukeSeed0
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s Market1501 -t DukeMTMC -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 1 --log logs/baseline/Market2DukeSeed1
# step2: train mmt
CUDA_VISIBLE_DEVICES=0,1,2,3 python mmt.py data data -s Market1501 -t DukeMTMC -a reid_resnet50 \
--pretrained-model-1-path logs/baseline/Market2DukeSeed0/checkpoints/best.pth \
--pretrained-model-2-path logs/baseline/Market2DukeSeed1/checkpoints/best.pth \
--finetune --seed 0 --log logs/mmt/Market2Duke
# Duke -> Market1501
# step1: pretrain
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s DukeMTMC -t Market1501 -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 0 --log logs/baseline/Duke2MarketSeed0
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s DukeMTMC -t Market1501 -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 1 --log logs/baseline/Duke2MarketSeed1
# step2: train mmt
CUDA_VISIBLE_DEVICES=0,1,2,3 python mmt.py data data -s DukeMTMC -t Market1501 -a reid_resnet50 \
--pretrained-model-1-path logs/baseline/Duke2MarketSeed0/checkpoints/best.pth \
--pretrained-model-2-path logs/baseline/Duke2MarketSeed1/checkpoints/best.pth \
--finetune --seed 0 --log logs/mmt/Duke2Market
# Market1501 -> MSMT
# step1: pretrain
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s Market1501 -t MSMT17 -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 0 --log logs/baseline/Market2MSMTSeed0
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s Market1501 -t MSMT17 -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 1 --log logs/baseline/Market2MSMTSeed1
# step2: train mmt
CUDA_VISIBLE_DEVICES=0,1,2,3 python mmt.py data data -s Market1501 -t MSMT17 -a reid_resnet50 \
--pretrained-model-1-path logs/baseline/Market2MSMTSeed0/checkpoints/best.pth \
--pretrained-model-2-path logs/baseline/Market2MSMTSeed1/checkpoints/best.pth \
--num-clusters 1000 --finetune --seed 0 --log logs/mmt/Market2MSMT
# MSMT -> Market1501
# step1: pretrain
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s MSMT17 -t Market1501 -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 0 --log logs/baseline/MSMT2MarketSeed0
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s MSMT17 -t Market1501 -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 1 --log logs/baseline/MSMT2MarketSeed1
# step2: train mmt
CUDA_VISIBLE_DEVICES=0,1,2,3 python mmt.py data data -s MSMT17 -t Market1501 -a reid_resnet50 \
--pretrained-model-1-path logs/baseline/MSMT2MarketSeed0/checkpoints/best.pth \
--pretrained-model-2-path logs/baseline/MSMT2MarketSeed1/checkpoints/best.pth \
--finetune --seed 0 --log logs/mmt/MSMT2Market
# Duke -> MSMT
# step1: pretrain
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s DukeMTMC -t MSMT17 -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 0 --log logs/baseline/Duke2MSMTSeed0
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s DukeMTMC -t MSMT17 -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 1 --log logs/baseline/Duke2MSMTSeed1
# step2: train mmt
CUDA_VISIBLE_DEVICES=0,1,2,3 python mmt.py data data -s DukeMTMC -t MSMT17 -a reid_resnet50 \
--pretrained-model-1-path logs/baseline/Duke2MSMTSeed0/checkpoints/best.pth \
--pretrained-model-2-path logs/baseline/Duke2MSMTSeed1/checkpoints/best.pth \
--num-clusters 1000 --finetune --seed 0 --log logs/mmt/Duke2MSMT
# MSMT -> Duke
# step1: pretrain
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s MSMT17 -t DukeMTMC -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 0 --log logs/baseline/MSMT2DukeSeed0
CUDA_VISIBLE_DEVICES=0 python baseline.py data data -s MSMT17 -t DukeMTMC -a reid_resnet50 \
--iters-per-epoch 800 --print-freq 80 --finetune --seed 1 --log logs/baseline/MSMT2DukeSeed1
# step2: train mmt
CUDA_VISIBLE_DEVICES=0,1,2,3 python mmt.py data data -s MSMT17 -t DukeMTMC -a reid_resnet50 \
--pretrained-model-1-path logs/baseline/MSMT2DukeSeed0/checkpoints/best.pth \
--pretrained-model-2-path logs/baseline/MSMT2DukeSeed1/checkpoints/best.pth \
--finetune --seed 0 --log logs/mmt/MSMT2Duke