-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoc_annotation.py
66 lines (53 loc) · 1.8 KB
/
voc_annotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import random
import glob
TRAINVAL_PERCENT = 1
TRAIN_PERCENT = 0.9
DATASET_PATH = 'datasets/train_voc'
def get_file_names(dir, filter="*.png"):
names = []
for file_path in glob.glob(os.path.join(dir, filter)):
filename = os.path.basename(file_path)
names.append(filename)
return names
if __name__ == "__main__":
random.seed(0)
print("Generate txt in ImageSets.")
seg_filepath = os.path.join(DATASET_PATH, 'SegmentationClassPNG')
saveBasePath = os.path.join(DATASET_PATH, 'ImageSets/Segmentation')
if not os.path.exists(saveBasePath):
os.makedirs(saveBasePath)
total_seg = get_file_names(seg_filepath)
num = len(total_seg)
seg_list = range(num)
tv = int(num * TRAINVAL_PERCENT)
tr = int(tv * TRAIN_PERCENT)
trainval = random.sample(seg_list, tv)
train = random.sample(trainval, tr)
print("train and val size", tv)
print("train size", tr)
trainval_txt = open(os.path.join(saveBasePath, 'trainval.txt'),
'w',
encoding="utf8")
test_txt = open(os.path.join(saveBasePath, 'test.txt'),
'w',
encoding="utf8")
train_txt = open(os.path.join(saveBasePath, 'train.txt'),
'w',
encoding="utf8")
val_txt = open(os.path.join(saveBasePath, 'val.txt'), 'w', encoding="utf8")
for i in seg_list:
name = total_seg[i][:-4] + '\n'
if i in trainval:
trainval_txt.write(name)
if i in train:
train_txt.write(name)
else:
val_txt.write(name)
else:
test_txt.write(name)
trainval_txt.close()
train_txt.close()
val_txt.close()
test_txt.close()
print("Generate txt in ImageSets done.")