diff --git a/__init__.py b/__init__.py index c262ea42a6c5..c43000e27b82 100644 --- a/__init__.py +++ b/__init__.py @@ -80,6 +80,7 @@ "AutoencoderTiny", "ConsistencyDecoderVAE", "ControlNetModel", + "ControlNetXSModel", "Kandinsky3UNet", "ModelMixin", "MotionAdapter", @@ -250,6 +251,7 @@ "StableDiffusionControlNetImg2ImgPipeline", "StableDiffusionControlNetInpaintPipeline", "StableDiffusionControlNetPipeline", + "StableDiffusionControlNetXSPipeline", "StableDiffusionDepth2ImgPipeline", "StableDiffusionDiffEditPipeline", "StableDiffusionGLIGENPipeline", @@ -273,6 +275,7 @@ "StableDiffusionXLControlNetImg2ImgPipeline", "StableDiffusionXLControlNetInpaintPipeline", "StableDiffusionXLControlNetPipeline", + "StableDiffusionXLControlNetXSPipeline", "StableDiffusionXLImg2ImgPipeline", "StableDiffusionXLInpaintPipeline", "StableDiffusionXLInstructPix2PixPipeline", @@ -454,6 +457,7 @@ AutoencoderTiny, ConsistencyDecoderVAE, ControlNetModel, + ControlNetXSModel, Kandinsky3UNet, ModelMixin, MotionAdapter, @@ -603,6 +607,7 @@ StableDiffusionControlNetImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, + StableDiffusionControlNetXSPipeline, StableDiffusionDepth2ImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionGLIGENPipeline, @@ -626,6 +631,7 @@ StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline, StableDiffusionXLControlNetPipeline, + StableDiffusionXLControlNetXSPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLInstructPix2PixPipeline, diff --git a/models/__init__.py b/models/__init__.py index e3794939e25e..ec1c7ab43494 100644 --- a/models/__init__.py +++ b/models/__init__.py @@ -32,6 +32,7 @@ _import_structure["autoencoder_tiny"] = ["AutoencoderTiny"] _import_structure["consistency_decoder_vae"] = ["ConsistencyDecoderVAE"] _import_structure["controlnet"] = ["ControlNetModel"] + _import_structure["controlnetxs"] = ["ControlNetXSModel"] _import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"] _import_structure["embeddings"] = ["ImageProjection"] _import_structure["modeling_utils"] = ["ModelMixin"] @@ -63,6 +64,7 @@ from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .controlnet import ControlNetModel + from .controlnetxs import ControlNetXSModel from .dual_transformer_2d import DualTransformer2DModel from .embeddings import ImageProjection from .modeling_utils import ModelMixin diff --git a/models/controlnetxs.py b/models/controlnetxs.py new file mode 100644 index 000000000000..41f2d8af01b1 --- /dev/null +++ b/models/controlnetxs.py @@ -0,0 +1,977 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import math +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import functional as F +from torch.nn.modules.normalization import GroupNorm + +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, logging +from .attention_processor import ( + AttentionProcessor, +) +from .autoencoder_kl import AutoencoderKL +from .lora import LoRACompatibleConv +from .modeling_utils import ModelMixin +from .unet_2d_blocks import ( + CrossAttnDownBlock2D, + CrossAttnUpBlock2D, + DownBlock2D, + Downsample2D, + ResnetBlock2D, + Transformer2DModel, + UpBlock2D, + Upsample2D, +) +from .unet_2d_condition import UNet2DConditionModel + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class ControlNetXSOutput(BaseOutput): + """ + The output of [`ControlNetXSModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + The output of the `ControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base model + output, but is already the final output. + """ + + sample: torch.FloatTensor = None + + +# copied from diffusers.models.controlnet.ControlNetConditioningEmbedding +class ControlNetConditioningEmbedding(nn.Module): + """ + Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN + [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized + training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the + convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides + (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full + model) to encode image-space conditions ... into feature maps ..." + """ + + def __init__( + self, + conditioning_embedding_channels: int, + conditioning_channels: int = 3, + block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), + ): + super().__init__() + + self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) + + self.blocks = nn.ModuleList([]) + + for i in range(len(block_out_channels) - 1): + channel_in = block_out_channels[i] + channel_out = block_out_channels[i + 1] + self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) + self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) + + self.conv_out = zero_module( + nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) + ) + + def forward(self, conditioning): + embedding = self.conv_in(conditioning) + embedding = F.silu(embedding) + + for block in self.blocks: + embedding = block(embedding) + embedding = F.silu(embedding) + + embedding = self.conv_out(embedding) + + return embedding + + +class ControlNetXSModel(ModelMixin, ConfigMixin): + r""" + A ControlNet-XS model + + This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic + methods implemented for all models (such as downloading or saving). + + Most of parameters for this model are passed into the [`UNet2DConditionModel`] it creates. Check the documentation + of [`UNet2DConditionModel`] for them. + + Parameters: + conditioning_channels (`int`, defaults to 3): + Number of channels of conditioning input (e.g. an image) + controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): + The channel order of conditional image. Will convert to `rgb` if it's `bgr`. + conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`): + The tuple of output channel for each block in the `controlnet_cond_embedding` layer. + time_embedding_input_dim (`int`, defaults to 320): + Dimension of input into time embedding. Needs to be same as in the base model. + time_embedding_dim (`int`, defaults to 1280): + Dimension of output from time embedding. Needs to be same as in the base model. + learn_embedding (`bool`, defaults to `False`): + Whether to use time embedding of the control model. If yes, the time embedding is a linear interpolation of + the time embeddings of the control and base model with interpolation parameter `time_embedding_mix**3`. + time_embedding_mix (`float`, defaults to 1.0): + Linear interpolation parameter used if `learn_embedding` is `True`. A value of 1.0 means only the + control model's time embedding will be used. A value of 0.0 means only the base model's time embedding will be used. + base_model_channel_sizes (`Dict[str, List[Tuple[int]]]`): + Channel sizes of each subblock of base model. Use `gather_subblock_sizes` on your base model to compute it. + """ + + @classmethod + def init_original(cls, base_model: UNet2DConditionModel, is_sdxl=True): + """ + Create a ControlNetXS model with the same parameters as in the original paper (https://github.com/vislearn/ControlNet-XS). + + Parameters: + base_model (`UNet2DConditionModel`): + Base UNet model. Needs to be either StableDiffusion or StableDiffusion-XL. + is_sdxl (`bool`, defaults to `True`): + Whether passed `base_model` is a StableDiffusion-XL model. + """ + + def get_dim_attn_heads(base_model: UNet2DConditionModel, size_ratio: float, num_attn_heads: int): + """ + Currently, diffusers can only set the dimension of attention heads (see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why). + The original ControlNet-XS model, however, define the number of attention heads. + That's why compute the dimensions needed to get the correct number of attention heads. + """ + block_out_channels = [int(size_ratio * c) for c in base_model.config.block_out_channels] + dim_attn_heads = [math.ceil(c / num_attn_heads) for c in block_out_channels] + return dim_attn_heads + + if is_sdxl: + return ControlNetXSModel.from_unet( + base_model, + time_embedding_mix=0.95, + learn_embedding=True, + size_ratio=0.1, + conditioning_embedding_out_channels=(16, 32, 96, 256), + num_attention_heads=get_dim_attn_heads(base_model, 0.1, 64), + ) + else: + return ControlNetXSModel.from_unet( + base_model, + time_embedding_mix=1.0, + learn_embedding=True, + size_ratio=0.0125, + conditioning_embedding_out_channels=(16, 32, 96, 256), + num_attention_heads=get_dim_attn_heads(base_model, 0.0125, 8), + ) + + @classmethod + def _gather_subblock_sizes(cls, unet: UNet2DConditionModel, base_or_control: str): + """To create correctly sized connections between base and control model, we need to know + the input and output channels of each subblock. + + Parameters: + unet (`UNet2DConditionModel`): + Unet of which the subblock channels sizes are to be gathered. + base_or_control (`str`): + Needs to be either "base" or "control". If "base", decoder is also considered. + """ + if base_or_control not in ["base", "control"]: + raise ValueError("`base_or_control` needs to be either `base` or `control`") + + channel_sizes = {"down": [], "mid": [], "up": []} + + # input convolution + channel_sizes["down"].append((unet.conv_in.in_channels, unet.conv_in.out_channels)) + + # encoder blocks + for module in unet.down_blocks: + if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): + for r in module.resnets: + channel_sizes["down"].append((r.in_channels, r.out_channels)) + if module.downsamplers: + channel_sizes["down"].append( + (module.downsamplers[0].channels, module.downsamplers[0].out_channels) + ) + else: + raise ValueError(f"Encountered unknown module of type {type(module)} while creating ControlNet-XS.") + + # middle block + channel_sizes["mid"].append((unet.mid_block.resnets[0].in_channels, unet.mid_block.resnets[0].out_channels)) + + # decoder blocks + if base_or_control == "base": + for module in unet.up_blocks: + if isinstance(module, (CrossAttnUpBlock2D, UpBlock2D)): + for r in module.resnets: + channel_sizes["up"].append((r.in_channels, r.out_channels)) + else: + raise ValueError( + f"Encountered unknown module of type {type(module)} while creating ControlNet-XS." + ) + + return channel_sizes + + @register_to_config + def __init__( + self, + conditioning_channels: int = 3, + conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), + controlnet_conditioning_channel_order: str = "rgb", + time_embedding_input_dim: int = 320, + time_embedding_dim: int = 1280, + time_embedding_mix: float = 1.0, + learn_embedding: bool = False, + base_model_channel_sizes: Dict[str, List[Tuple[int]]] = { + "down": [ + (4, 320), + (320, 320), + (320, 320), + (320, 320), + (320, 640), + (640, 640), + (640, 640), + (640, 1280), + (1280, 1280), + ], + "mid": [(1280, 1280)], + "up": [ + (2560, 1280), + (2560, 1280), + (1920, 1280), + (1920, 640), + (1280, 640), + (960, 640), + (960, 320), + (640, 320), + (640, 320), + ], + }, + sample_size: Optional[int] = None, + down_block_types: Tuple[str] = ( + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ), + up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), + block_out_channels: Tuple[int] = (320, 640, 1280, 1280), + norm_num_groups: Optional[int] = 32, + cross_attention_dim: Union[int, Tuple[int]] = 1280, + transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, + num_attention_heads: Optional[Union[int, Tuple[int]]] = 8, + upcast_attention: bool = False, + ): + super().__init__() + + # 1 - Create control unet + self.control_model = UNet2DConditionModel( + sample_size=sample_size, + down_block_types=down_block_types, + up_block_types=up_block_types, + block_out_channels=block_out_channels, + norm_num_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + transformer_layers_per_block=transformer_layers_per_block, + attention_head_dim=num_attention_heads, + use_linear_projection=True, + upcast_attention=upcast_attention, + time_embedding_dim=time_embedding_dim, + ) + + # 2 - Do model surgery on control model + # 2.1 - Allow to use the same time information as the base model + adjust_time_dims(self.control_model, time_embedding_input_dim, time_embedding_dim) + + # 2.2 - Allow for information infusion from base model + + # We concat the output of each base encoder subblocks to the input of the next control encoder subblock + # (We ignore the 1st element, as it represents the `conv_in`.) + extra_input_channels = [input_channels for input_channels, _ in base_model_channel_sizes["down"][1:]] + it_extra_input_channels = iter(extra_input_channels) + + for b, block in enumerate(self.control_model.down_blocks): + for r in range(len(block.resnets)): + increase_block_input_in_encoder_resnet( + self.control_model, block_no=b, resnet_idx=r, by=next(it_extra_input_channels) + ) + + if block.downsamplers: + increase_block_input_in_encoder_downsampler( + self.control_model, block_no=b, by=next(it_extra_input_channels) + ) + + increase_block_input_in_mid_resnet(self.control_model, by=extra_input_channels[-1]) + + # 2.3 - Make group norms work with modified channel sizes + adjust_group_norms(self.control_model) + + # 3 - Gather Channel Sizes + self.ch_inout_ctrl = ControlNetXSModel._gather_subblock_sizes(self.control_model, base_or_control="control") + self.ch_inout_base = base_model_channel_sizes + + # 4 - Build connections between base and control model + self.down_zero_convs_out = nn.ModuleList([]) + self.down_zero_convs_in = nn.ModuleList([]) + self.middle_block_out = nn.ModuleList([]) + self.middle_block_in = nn.ModuleList([]) + self.up_zero_convs_out = nn.ModuleList([]) + self.up_zero_convs_in = nn.ModuleList([]) + + for ch_io_base in self.ch_inout_base["down"]: + self.down_zero_convs_in.append(self._make_zero_conv(in_channels=ch_io_base[1], out_channels=ch_io_base[1])) + for i in range(len(self.ch_inout_ctrl["down"])): + self.down_zero_convs_out.append( + self._make_zero_conv(self.ch_inout_ctrl["down"][i][1], self.ch_inout_base["down"][i][1]) + ) + + self.middle_block_out = self._make_zero_conv( + self.ch_inout_ctrl["mid"][-1][1], self.ch_inout_base["mid"][-1][1] + ) + + self.up_zero_convs_out.append( + self._make_zero_conv(self.ch_inout_ctrl["down"][-1][1], self.ch_inout_base["mid"][-1][1]) + ) + for i in range(1, len(self.ch_inout_ctrl["down"])): + self.up_zero_convs_out.append( + self._make_zero_conv(self.ch_inout_ctrl["down"][-(i + 1)][1], self.ch_inout_base["up"][i - 1][1]) + ) + + # 5 - Create conditioning hint embedding + self.controlnet_cond_embedding = ControlNetConditioningEmbedding( + conditioning_embedding_channels=block_out_channels[0], + block_out_channels=conditioning_embedding_out_channels, + conditioning_channels=conditioning_channels, + ) + + # In the mininal implementation setting, we only need the control model up to the mid block + del self.control_model.up_blocks + del self.control_model.conv_norm_out + del self.control_model.conv_out + + @classmethod + def from_unet( + cls, + unet: UNet2DConditionModel, + conditioning_channels: int = 3, + conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), + controlnet_conditioning_channel_order: str = "rgb", + learn_embedding: bool = False, + time_embedding_mix: float = 1.0, + block_out_channels: Optional[Tuple[int]] = None, + size_ratio: Optional[float] = None, + num_attention_heads: Optional[Union[int, Tuple[int]]] = 8, + norm_num_groups: Optional[int] = None, + ): + r""" + Instantiate a [`ControlNetXSModel`] from [`UNet2DConditionModel`]. + + Parameters: + unet (`UNet2DConditionModel`): + The UNet model we want to control. The dimensions of the ControlNetXSModel will be adapted to it. + conditioning_channels (`int`, defaults to 3): + Number of channels of conditioning input (e.g. an image) + conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`): + The tuple of output channel for each block in the `controlnet_cond_embedding` layer. + controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): + The channel order of conditional image. Will convert to `rgb` if it's `bgr`. + learn_embedding (`bool`, defaults to `False`): + Wether to use time embedding of the control model. If yes, the time embedding is a linear interpolation + of the time embeddings of the control and base model with interpolation parameter + `time_embedding_mix**3`. + time_embedding_mix (`float`, defaults to 1.0): + Linear interpolation parameter used if `learn_embedding` is `True`. + block_out_channels (`Tuple[int]`, *optional*): + Down blocks output channels in control model. Either this or `size_ratio` must be given. + size_ratio (float, *optional*): + When given, block_out_channels is set to a relative fraction of the base model's block_out_channels. + Either this or `block_out_channels` must be given. + num_attention_heads (`Union[int, Tuple[int]]`, *optional*): + The dimension of the attention heads. The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. + norm_num_groups (int, *optional*, defaults to `None`): + The number of groups to use for the normalization of the control unet. If `None`, + `int(unet.config.norm_num_groups * size_ratio)` is taken. + """ + + # Check input + fixed_size = block_out_channels is not None + relative_size = size_ratio is not None + if not (fixed_size ^ relative_size): + raise ValueError( + "Pass exactly one of `block_out_channels` (for absolute sizing) or `control_model_ratio` (for relative sizing)." + ) + + # Create model + if block_out_channels is None: + block_out_channels = [int(size_ratio * c) for c in unet.config.block_out_channels] + + # Check that attention heads and group norms match channel sizes + # - attention heads + def attn_heads_match_channel_sizes(attn_heads, channel_sizes): + if isinstance(attn_heads, (tuple, list)): + return all(c % a == 0 for a, c in zip(attn_heads, channel_sizes)) + else: + return all(c % attn_heads == 0 for c in channel_sizes) + + num_attention_heads = num_attention_heads or unet.config.attention_head_dim + if not attn_heads_match_channel_sizes(num_attention_heads, block_out_channels): + raise ValueError( + f"The dimension of attention heads ({num_attention_heads}) must divide `block_out_channels` ({block_out_channels}). If you didn't set `num_attention_heads` the default settings don't match your model. Set `num_attention_heads` manually." + ) + + # - group norms + def group_norms_match_channel_sizes(num_groups, channel_sizes): + return all(c % num_groups == 0 for c in channel_sizes) + + if norm_num_groups is None: + if group_norms_match_channel_sizes(unet.config.norm_num_groups, block_out_channels): + norm_num_groups = unet.config.norm_num_groups + else: + norm_num_groups = min(block_out_channels) + + if group_norms_match_channel_sizes(norm_num_groups, block_out_channels): + print( + f"`norm_num_groups` was set to `min(block_out_channels)` (={norm_num_groups}) so it divides all block_out_channels` ({block_out_channels}). Set it explicitly to remove this information." + ) + else: + raise ValueError( + f"`block_out_channels` ({block_out_channels}) don't match the base models `norm_num_groups` ({unet.config.norm_num_groups}). Setting `norm_num_groups` to `min(block_out_channels)` ({norm_num_groups}) didn't fix this. Pass `norm_num_groups` explicitly so it divides all block_out_channels." + ) + + def get_time_emb_input_dim(unet: UNet2DConditionModel): + return unet.time_embedding.linear_1.in_features + + def get_time_emb_dim(unet: UNet2DConditionModel): + return unet.time_embedding.linear_2.out_features + + # Clone params from base unet if + # (i) it's required to build SD or SDXL, and + # (ii) it's not used for the time embedding (as time embedding of control model is never used), and + # (iii) it's not set further below anyway + to_keep = [ + "cross_attention_dim", + "down_block_types", + "sample_size", + "transformer_layers_per_block", + "up_block_types", + "upcast_attention", + ] + kwargs = {k: v for k, v in dict(unet.config).items() if k in to_keep} + kwargs.update(block_out_channels=block_out_channels) + kwargs.update(num_attention_heads=num_attention_heads) + kwargs.update(norm_num_groups=norm_num_groups) + + # Add controlnetxs-specific params + kwargs.update( + conditioning_channels=conditioning_channels, + controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, + time_embedding_input_dim=get_time_emb_input_dim(unet), + time_embedding_dim=get_time_emb_dim(unet), + time_embedding_mix=time_embedding_mix, + learn_embedding=learn_embedding, + base_model_channel_sizes=ControlNetXSModel._gather_subblock_sizes(unet, base_or_control="base"), + conditioning_embedding_out_channels=conditioning_embedding_out_channels, + ) + + return cls(**kwargs) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + return self.control_model.attn_processors + + def set_attn_processor( + self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False + ): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + self.control_model.set_attn_processor(processor, _remove_lora) + + def set_default_attn_processor(self): + """ + Disables custom attention processors and sets the default attention implementation. + """ + self.control_model.set_default_attn_processor() + + def set_attention_slice(self, slice_size): + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + self.control_model.set_attention_slice(slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (UNet2DConditionModel)): + if value: + module.enable_gradient_checkpointing() + else: + module.disable_gradient_checkpointing() + + def forward( + self, + base_model: UNet2DConditionModel, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + controlnet_cond: torch.Tensor, + conditioning_scale: float = 1.0, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + return_dict: bool = True, + ) -> Union[ControlNetXSOutput, Tuple]: + """ + The [`ControlNetModel`] forward method. + + Args: + base_model (`UNet2DConditionModel`): + The base unet model we want to control. + sample (`torch.FloatTensor`): + The noisy input tensor. + timestep (`Union[torch.Tensor, float, int]`): + The number of timesteps to denoise an input. + encoder_hidden_states (`torch.Tensor`): + The encoder hidden states. + controlnet_cond (`torch.FloatTensor`): + The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. + conditioning_scale (`float`, defaults to `1.0`): + How much the control model affects the base model outputs. + class_labels (`torch.Tensor`, *optional*, defaults to `None`): + Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. + timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): + Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the + timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep + embeddings. + attention_mask (`torch.Tensor`, *optional*, defaults to `None`): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + added_cond_kwargs (`dict`): + Additional conditions for the Stable Diffusion XL UNet. + cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): + A kwargs dictionary that if specified is passed along to the `AttnProcessor`. + return_dict (`bool`, defaults to `True`): + Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. + + Returns: + [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`: + If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a + tuple is returned where the first element is the sample tensor. + """ + # check channel order + channel_order = self.config.controlnet_conditioning_channel_order + + if channel_order == "rgb": + # in rgb order by default + ... + elif channel_order == "bgr": + controlnet_cond = torch.flip(controlnet_cond, dims=[1]) + else: + raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") + + # scale control strength + n_connections = len(self.down_zero_convs_out) + 1 + len(self.up_zero_convs_out) + scale_list = torch.full((n_connections,), conditioning_scale) + + # prepare attention_mask + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = base_model.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + + if self.config.learn_embedding: + ctrl_temb = self.control_model.time_embedding(t_emb, timestep_cond) + base_temb = base_model.time_embedding(t_emb, timestep_cond) + interpolation_param = self.config.time_embedding_mix**0.3 + + temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param) + else: + temb = base_model.time_embedding(t_emb) + + # added time & text embeddings + aug_emb = None + + if base_model.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if base_model.config.class_embed_type == "timestep": + class_labels = base_model.time_proj(class_labels) + + class_emb = base_model.class_embedding(class_labels).to(dtype=self.dtype) + temb = temb + class_emb + + if base_model.config.addition_embed_type is not None: + if base_model.config.addition_embed_type == "text": + aug_emb = base_model.add_embedding(encoder_hidden_states) + elif base_model.config.addition_embed_type == "text_image": + raise NotImplementedError() + elif base_model.config.addition_embed_type == "text_time": + # SDXL - style + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = base_model.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(temb.dtype) + aug_emb = base_model.add_embedding(add_embeds) + elif base_model.config.addition_embed_type == "image": + raise NotImplementedError() + elif base_model.config.addition_embed_type == "image_hint": + raise NotImplementedError() + + temb = temb + aug_emb if aug_emb is not None else temb + + # text embeddings + cemb = encoder_hidden_states + + # Preparation + guided_hint = self.controlnet_cond_embedding(controlnet_cond) + + h_ctrl = h_base = sample + hs_base, hs_ctrl = [], [] + it_down_convs_in, it_down_convs_out, it_dec_convs_in, it_up_convs_out = map( + iter, (self.down_zero_convs_in, self.down_zero_convs_out, self.up_zero_convs_in, self.up_zero_convs_out) + ) + scales = iter(scale_list) + + base_down_subblocks = to_sub_blocks(base_model.down_blocks) + ctrl_down_subblocks = to_sub_blocks(self.control_model.down_blocks) + base_mid_subblocks = to_sub_blocks([base_model.mid_block]) + ctrl_mid_subblocks = to_sub_blocks([self.control_model.mid_block]) + base_up_subblocks = to_sub_blocks(base_model.up_blocks) + + # Cross Control + # 0 - conv in + h_base = base_model.conv_in(h_base) + h_ctrl = self.control_model.conv_in(h_ctrl) + if guided_hint is not None: + h_ctrl += guided_hint + h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base + + hs_base.append(h_base) + hs_ctrl.append(h_ctrl) + + # 1 - down + for m_base, m_ctrl in zip(base_down_subblocks, ctrl_down_subblocks): + h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl + h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock + h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock + h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base + hs_base.append(h_base) + hs_ctrl.append(h_ctrl) + + # 2 - mid + h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl + for m_base, m_ctrl in zip(base_mid_subblocks, ctrl_mid_subblocks): + h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock + h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock + h_base = h_base + self.middle_block_out(h_ctrl) * next(scales) # D - add ctrl -> base + + # 3 - up + for i, m_base in enumerate(base_up_subblocks): + h_base = h_base + next(it_up_convs_out)(hs_ctrl.pop()) * next(scales) # add info from ctrl encoder + h_base = torch.cat([h_base, hs_base.pop()], dim=1) # concat info from base encoder+ctrl encoder + h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) + + h_base = base_model.conv_norm_out(h_base) + h_base = base_model.conv_act(h_base) + h_base = base_model.conv_out(h_base) + + if not return_dict: + return h_base + + return ControlNetXSOutput(sample=h_base) + + def _make_zero_conv(self, in_channels, out_channels=None): + # keep running track of channels sizes + self.in_channels = in_channels + self.out_channels = out_channels or in_channels + + return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0)) + + @torch.no_grad() + def _check_if_vae_compatible(self, vae: AutoencoderKL): + condition_downscale_factor = 2 ** (len(self.config.conditioning_embedding_out_channels) - 1) + vae_downscale_factor = 2 ** (len(vae.config.block_out_channels) - 1) + compatible = condition_downscale_factor == vae_downscale_factor + return compatible, condition_downscale_factor, vae_downscale_factor + + +class SubBlock(nn.ModuleList): + """A SubBlock is the largest piece of either base or control model, that is executed independently of the other model respectively. + Before each subblock, information is concatted from base to control. And after each subblock, information is added from control to base. + """ + + def __init__(self, ms, *args, **kwargs): + if not is_iterable(ms): + ms = [ms] + super().__init__(ms, *args, **kwargs) + + def forward( + self, + x: torch.Tensor, + temb: torch.Tensor, + cemb: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + ): + """Iterate through children and pass correct information to each.""" + for m in self: + if isinstance(m, ResnetBlock2D): + x = m(x, temb) + elif isinstance(m, Transformer2DModel): + x = m(x, cemb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs).sample + elif isinstance(m, Downsample2D): + x = m(x) + elif isinstance(m, Upsample2D): + x = m(x) + else: + raise ValueError( + f"Type of m is {type(m)} but should be `ResnetBlock2D`, `Transformer2DModel`, `Downsample2D` or `Upsample2D`" + ) + + return x + + +def adjust_time_dims(unet: UNet2DConditionModel, in_dim: int, out_dim: int): + unet.time_embedding.linear_1 = nn.Linear(in_dim, out_dim) + + +def increase_block_input_in_encoder_resnet(unet: UNet2DConditionModel, block_no, resnet_idx, by): + """Increase channels sizes to allow for additional concatted information from base model""" + r = unet.down_blocks[block_no].resnets[resnet_idx] + old_norm1, old_conv1 = r.norm1, r.conv1 + # norm + norm_args = "num_groups num_channels eps affine".split(" ") + for a in norm_args: + assert hasattr(old_norm1, a) + norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args} + norm_kwargs["num_channels"] += by # surgery done here + # conv1 + conv1_args = ( + "in_channels out_channels kernel_size stride padding dilation groups bias padding_mode lora_layer".split(" ") + ) + for a in conv1_args: + assert hasattr(old_conv1, a) + conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args} + conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor. + conv1_kwargs["in_channels"] += by # surgery done here + # conv_shortcut + # as we changed the input size of the block, the input and output sizes are likely different, + # therefore we need a conv_shortcut (simply adding won't work) + conv_shortcut_args_kwargs = { + "in_channels": conv1_kwargs["in_channels"], + "out_channels": conv1_kwargs["out_channels"], + # default arguments from resnet.__init__ + "kernel_size": 1, + "stride": 1, + "padding": 0, + "bias": True, + } + # swap old with new modules + unet.down_blocks[block_no].resnets[resnet_idx].norm1 = GroupNorm(**norm_kwargs) + unet.down_blocks[block_no].resnets[resnet_idx].conv1 = LoRACompatibleConv(**conv1_kwargs) + unet.down_blocks[block_no].resnets[resnet_idx].conv_shortcut = LoRACompatibleConv(**conv_shortcut_args_kwargs) + unet.down_blocks[block_no].resnets[resnet_idx].in_channels += by # surgery done here + + +def increase_block_input_in_encoder_downsampler(unet: UNet2DConditionModel, block_no, by): + """Increase channels sizes to allow for additional concatted information from base model""" + old_down = unet.down_blocks[block_no].downsamplers[0].conv + # conv1 + args = "in_channels out_channels kernel_size stride padding dilation groups bias padding_mode lora_layer".split( + " " + ) + for a in args: + assert hasattr(old_down, a) + kwargs = {a: getattr(old_down, a) for a in args} + kwargs["bias"] = "bias" in kwargs # as param, bias is a boolean, but as attr, it's a tensor. + kwargs["in_channels"] += by # surgery done here + # swap old with new modules + unet.down_blocks[block_no].downsamplers[0].conv = LoRACompatibleConv(**kwargs) + unet.down_blocks[block_no].downsamplers[0].channels += by # surgery done here + + +def increase_block_input_in_mid_resnet(unet: UNet2DConditionModel, by): + """Increase channels sizes to allow for additional concatted information from base model""" + m = unet.mid_block.resnets[0] + old_norm1, old_conv1 = m.norm1, m.conv1 + # norm + norm_args = "num_groups num_channels eps affine".split(" ") + for a in norm_args: + assert hasattr(old_norm1, a) + norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args} + norm_kwargs["num_channels"] += by # surgery done here + # conv1 + conv1_args = ( + "in_channels out_channels kernel_size stride padding dilation groups bias padding_mode lora_layer".split(" ") + ) + for a in conv1_args: + assert hasattr(old_conv1, a) + conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args} + conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor. + conv1_kwargs["in_channels"] += by # surgery done here + # conv_shortcut + # as we changed the input size of the block, the input and output sizes are likely different, + # therefore we need a conv_shortcut (simply adding won't work) + conv_shortcut_args_kwargs = { + "in_channels": conv1_kwargs["in_channels"], + "out_channels": conv1_kwargs["out_channels"], + # default arguments from resnet.__init__ + "kernel_size": 1, + "stride": 1, + "padding": 0, + "bias": True, + } + # swap old with new modules + unet.mid_block.resnets[0].norm1 = GroupNorm(**norm_kwargs) + unet.mid_block.resnets[0].conv1 = LoRACompatibleConv(**conv1_kwargs) + unet.mid_block.resnets[0].conv_shortcut = LoRACompatibleConv(**conv_shortcut_args_kwargs) + unet.mid_block.resnets[0].in_channels += by # surgery done here + + +def adjust_group_norms(unet: UNet2DConditionModel, max_num_group: int = 32): + def find_denominator(number, start): + if start >= number: + return number + while start != 0: + residual = number % start + if residual == 0: + return start + start -= 1 + + for block in [*unet.down_blocks, unet.mid_block]: + # resnets + for r in block.resnets: + if r.norm1.num_groups < max_num_group: + r.norm1.num_groups = find_denominator(r.norm1.num_channels, start=max_num_group) + + if r.norm2.num_groups < max_num_group: + r.norm2.num_groups = find_denominator(r.norm2.num_channels, start=max_num_group) + + # transformers + if hasattr(block, "attentions"): + for a in block.attentions: + if a.norm.num_groups < max_num_group: + a.norm.num_groups = find_denominator(a.norm.num_channels, start=max_num_group) + + +def is_iterable(o): + if isinstance(o, str): + return False + try: + iter(o) + return True + except TypeError: + return False + + +def to_sub_blocks(blocks): + if not is_iterable(blocks): + blocks = [blocks] + + sub_blocks = [] + + for b in blocks: + if hasattr(b, "resnets"): + if hasattr(b, "attentions") and b.attentions is not None: + for r, a in zip(b.resnets, b.attentions): + sub_blocks.append([r, a]) + + num_resnets = len(b.resnets) + num_attns = len(b.attentions) + + if num_resnets > num_attns: + # we can have more resnets than attentions, so add each resnet as separate subblock + for i in range(num_attns, num_resnets): + sub_blocks.append([b.resnets[i]]) + else: + for r in b.resnets: + sub_blocks.append([r]) + + # upsamplers are part of the same subblock + if hasattr(b, "upsamplers") and b.upsamplers is not None: + for u in b.upsamplers: + sub_blocks[-1].extend([u]) + + # downsamplers are own subblock + if hasattr(b, "downsamplers") and b.downsamplers is not None: + for d in b.downsamplers: + sub_blocks.append([d]) + + return list(map(SubBlock, sub_blocks)) + + +def zero_module(module): + for p in module.parameters(): + nn.init.zeros_(p) + return module diff --git a/pipelines/__init__.py b/pipelines/__init__.py index 5bb6a301ca4a..5e7b2e285f73 100644 --- a/pipelines/__init__.py +++ b/pipelines/__init__.py @@ -19,6 +19,7 @@ _dummy_objects = {} _import_structure = { "controlnet": [], + "controlnet_xs": [], "latent_diffusion": [], "stable_diffusion": [], "stable_diffusion_xl": [], @@ -93,6 +94,12 @@ "StableDiffusionXLControlNetPipeline", ] ) + _import_structure["controlnet_xs"].extend( + [ + "StableDiffusionControlNetXSPipeline", + "StableDiffusionXLControlNetXSPipeline", + ] + ) _import_structure["deepfloyd_if"] = [ "IFImg2ImgPipeline", "IFImg2ImgSuperResolutionPipeline", @@ -347,6 +354,10 @@ StableDiffusionXLControlNetInpaintPipeline, StableDiffusionXLControlNetPipeline, ) + from .controlnet_xs import ( + StableDiffusionControlNetXSPipeline, + StableDiffusionXLControlNetXSPipeline, + ) from .deepfloyd_if import ( IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, diff --git a/pipelines/controlnet_xs/__init__.py b/pipelines/controlnet_xs/__init__.py new file mode 100644 index 000000000000..978278b184f9 --- /dev/null +++ b/pipelines/controlnet_xs/__init__.py @@ -0,0 +1,68 @@ +from typing import TYPE_CHECKING + +from ...utils import ( + DIFFUSERS_SLOW_IMPORT, + OptionalDependencyNotAvailable, + _LazyModule, + get_objects_from_module, + is_flax_available, + is_torch_available, + is_transformers_available, +) + + +_dummy_objects = {} +_import_structure = {} + +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects # noqa F403 + + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure["pipeline_controlnet_xs"] = ["StableDiffusionControlNetXSPipeline"] + _import_structure["pipeline_controlnet_xs_sd_xl"] = ["StableDiffusionXLControlNetXSPipeline"] +try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_flax_and_transformers_objects # noqa F403 + + _dummy_objects.update(get_objects_from_module(dummy_flax_and_transformers_objects)) +else: + pass # _import_structure["pipeline_flax_controlnet"] = ["FlaxStableDiffusionControlNetPipeline"] + + +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_controlnet_xs import StableDiffusionControlNetXSPipeline + from .pipeline_controlnet_xs_sd_xl import StableDiffusionXLControlNetXSPipeline + + try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_flax_and_transformers_objects import * # noqa F403 + else: + pass # from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline + + +else: + import sys + + sys.modules[__name__] = _LazyModule( + __name__, + globals()["__file__"], + _import_structure, + module_spec=__spec__, + ) + for name, value in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) diff --git a/pipelines/controlnet_xs/pipeline_controlnet_xs.py b/pipelines/controlnet_xs/pipeline_controlnet_xs.py new file mode 100644 index 000000000000..1cc18e879baa --- /dev/null +++ b/pipelines/controlnet_xs/pipeline_controlnet_xs.py @@ -0,0 +1,944 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Union + +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer + +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetXSModel, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import ( + USE_PEFT_BACKEND, + deprecate, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from ..pipeline_utils import DiffusionPipeline +from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> # !pip install opencv-python transformers accelerate + >>> from diffusers import StableDiffusionControlNetXSPipeline, ControlNetXSModel + >>> from diffusers.utils import load_image + >>> import numpy as np + >>> import torch + + >>> import cv2 + >>> from PIL import Image + + >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" + >>> negative_prompt = "low quality, bad quality, sketches" + + >>> # download an image + >>> image = load_image( + ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png" + ... ) + + >>> # initialize the models and pipeline + >>> controlnet_conditioning_scale = 0.5 + >>> controlnet = ControlNetXSModel.from_pretrained( + ... "UmerHA/ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16 + ... ) + >>> pipe = StableDiffusionControlNetXSPipeline.from_pretrained( + ... "stabilityai/stable-diffusion-2-1", controlnet=controlnet, torch_dtype=torch.float16 + ... ) + >>> pipe.enable_model_cpu_offload() + + >>> # get canny image + >>> image = np.array(image) + >>> image = cv2.Canny(image, 100, 200) + >>> image = image[:, :, None] + >>> image = np.concatenate([image, image, image], axis=2) + >>> canny_image = Image.fromarray(image) + >>> # generate image + >>> image = pipe( + ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image + ... ).images[0] + ``` +""" + + +class StableDiffusionControlNetXSPipeline( + DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin +): + r""" + Pipeline for text-to-image generation using Stable Diffusion with ControlNet-XS guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. + text_encoder ([`~transformers.CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet2DConditionModel`]): + A `UNet2DConditionModel` to denoise the encoded image latents. + controlnet ([`ControlNetXSModel`]): + Provides additional conditioning to the `unet` during the denoising process. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + safety_checker ([`StableDiffusionSafetyChecker`]): + Classification module that estimates whether generated images could be considered offensive or harmful. + Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + about a model's potential harms. + feature_extractor ([`~transformers.CLIPImageProcessor`]): + A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. + """ + + model_cpu_offload_seq = "text_encoder->unet->vae>controlnet" + _optional_components = ["safety_checker", "feature_extractor"] + _exclude_from_cpu_offload = ["safety_checker"] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + controlnet: ControlNetXSModel, + scheduler: KarrasDiffusionSchedulers, + safety_checker: StableDiffusionSafetyChecker, + feature_extractor: CLIPImageProcessor, + requires_safety_checker: bool = True, + ): + super().__init__() + + if safety_checker is None and requires_safety_checker: + logger.warning( + f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" + " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" + " results in services or applications open to the public. Both the diffusers team and Hugging Face" + " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" + " it only for use-cases that involve analyzing network behavior or auditing its results. For more" + " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." + ) + + if safety_checker is not None and feature_extractor is None: + raise ValueError( + "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" + " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." + ) + + vae_compatible, cnxs_condition_downsample_factor, vae_downsample_factor = controlnet._check_if_vae_compatible( + vae + ) + if not vae_compatible: + raise ValueError( + f"The downsampling factors of the VAE ({vae_downsample_factor}) and the conditioning part of ControlNetXS model {cnxs_condition_downsample_factor} need to be equal. Consider building the ControlNetXS model with different `conditioning_block_sizes`." + ) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + unet=unet, + controlnet=controlnet, + scheduler=scheduler, + safety_checker=safety_checker, + feature_extractor=feature_extractor, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt + def _encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + **kwargs, + ): + deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." + deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) + + prompt_embeds_tuple = self.encode_prompt( + prompt=prompt, + device=device, + num_images_per_prompt=num_images_per_prompt, + do_classifier_free_guidance=do_classifier_free_guidance, + negative_prompt=negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=lora_scale, + **kwargs, + ) + + # concatenate for backwards comp + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + + return prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt + def encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + clip_skip: Optional[int] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + # textual inversion: procecss multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder( + text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True + ) + # Access the `hidden_states` first, that contains a tuple of + # all the hidden states from the encoder layers. Then index into + # the tuple to access the hidden states from the desired layer. + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + # We also need to apply the final LayerNorm here to not mess with the + # representations. The `last_hidden_states` that we typically use for + # obtaining the final prompt representations passes through the LayerNorm + # layer. + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = negative_prompt + + # textual inversion: procecss multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + return prompt_embeds, negative_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) + image, has_nsfw_concept = self.safety_checker( + images=image, clip_input=safety_checker_input.pixel_values.to(dtype) + ) + return image, has_nsfw_concept + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents + def decode_latents(self, latents): + deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" + deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) + + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + image, + callback_steps, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + ): + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + if ( + isinstance(self.controlnet, ControlNetXSModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetXSModel) + ): + self.check_image(image, prompt, prompt_embeds) + else: + assert False + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetXSModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetXSModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + else: + assert False + + start, end = control_guidance_start, control_guidance_end + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + def prepare_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + ): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance: + image = torch.cat([image] * 2) + + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): + r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. + + The suffixes after the scaling factors represent the stages where they are being applied. + + Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values + that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. + + Args: + s1 (`float`): + Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to + mitigate "oversmoothing effect" in the enhanced denoising process. + s2 (`float`): + Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to + mitigate "oversmoothing effect" in the enhanced denoising process. + b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. + b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. + """ + if not hasattr(self, "unet"): + raise ValueError("The pipeline must have `unet` for using FreeU.") + self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu + def disable_freeu(self): + """Disables the FreeU mechanism if enabled.""" + self.unet.disable_freeu() + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + image: PipelineImageInput = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + guidance_scale: float = 7.5, + negative_prompt: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + control_guidance_start: float = 0.0, + control_guidance_end: float = 1.0, + clip_skip: Optional[int] = None, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, + `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The ControlNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be + accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height + and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in + `init`, images must be passed as a list such that each element of the list can be correctly batched for + input to a single ControlNet. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that calls every `callback_steps` steps during inference. The function is called with the + following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function is called. If not specified, the callback is called at + every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set + the corresponding scale as a list. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned where the first element is a list with the generated images and the + second element is a list of `bool`s indicating whether the corresponding generated image contains + "not-safe-for-work" (nsfw) content. + """ + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + image, + callback_steps, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + controlnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + prompt_embeds, negative_prompt_embeds = self.encode_prompt( + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + clip_skip=clip_skip, + ) + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + # 4. Prepare image + if isinstance(controlnet, ControlNetXSModel): + image = self.prepare_image( + image=image, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=do_classifier_free_guidance, + ) + height, width = image.shape[-2:] + else: + assert False + + # 5. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + + # 6. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 8. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + is_unet_compiled = is_compiled_module(self.unet) + is_controlnet_compiled = is_compiled_module(self.controlnet) + is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # Relevant thread: + # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 + if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # predict the noise residual + dont_control = ( + i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end + ) + if dont_control: + noise_pred = self.unet( + sample=latent_model_input, + timestep=t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + return_dict=True, + ).sample + else: + noise_pred = self.controlnet( + base_model=self.unet, + sample=latent_model_input, + timestep=t, + encoder_hidden_states=prompt_embeds, + controlnet_cond=image, + conditioning_scale=controlnet_conditioning_scale, + cross_attention_kwargs=cross_attention_kwargs, + return_dict=True, + ).sample + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + # If we do sequential model offloading, let's offload unet and controlnet + # manually for max memory savings + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.unet.to("cpu") + self.controlnet.to("cpu") + torch.cuda.empty_cache() + + if not output_type == "latent": + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ + 0 + ] + image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) diff --git a/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py b/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py new file mode 100644 index 000000000000..59aee5d97d37 --- /dev/null +++ b/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py @@ -0,0 +1,1118 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer + +from diffusers.utils.import_utils import is_invisible_watermark_available + +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetXSModel, UNet2DConditionModel +from ...models.attention_processor import ( + AttnProcessor2_0, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + XFormersAttnProcessor, +) +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from ..pipeline_utils import DiffusionPipeline +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput + + +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> # !pip install opencv-python transformers accelerate + >>> from diffusers import StableDiffusionXLControlNetXSPipeline, ControlNetXSModel, AutoencoderKL + >>> from diffusers.utils import load_image + >>> import numpy as np + >>> import torch + + >>> import cv2 + >>> from PIL import Image + + >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" + >>> negative_prompt = "low quality, bad quality, sketches" + + >>> # download an image + >>> image = load_image( + ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png" + ... ) + + >>> # initialize the models and pipeline + >>> controlnet_conditioning_scale = 0.5 # recommended for good generalization + >>> controlnet = ControlNetXSModel.from_pretrained("UmerHA/ConrolNetXS-SDXL-canny", torch_dtype=torch.float16) + >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) + >>> pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained( + ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16 + ... ) + >>> pipe.enable_model_cpu_offload() + + >>> # get canny image + >>> image = np.array(image) + >>> image = cv2.Canny(image, 100, 200) + >>> image = image[:, :, None] + >>> image = np.concatenate([image, image, image], axis=2) + >>> canny_image = Image.fromarray(image) + + >>> # generate image + >>> image = pipe( + ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image + ... ).images[0] + ``` +""" + + +class StableDiffusionXLControlNetXSPipeline( + DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin +): + r""" + Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet-XS guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. + text_encoder ([`~transformers.CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): + Second frozen text-encoder + ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + tokenizer_2 ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet2DConditionModel`]): + A `UNet2DConditionModel` to denoise the encoded image latents. + controlnet ([`ControlNetXSModel`]: + Provides additional conditioning to the `unet` during the denoising process. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): + Whether the negative prompt embeddings should always be set to 0. Also see the config of + `stabilityai/stable-diffusion-xl-base-1-0`. + add_watermarker (`bool`, *optional*): + Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to + watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no + watermarker is used. + """ + + # leave controlnet out on purpose because it iterates with unet + model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae->controlnet" + _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + text_encoder_2: CLIPTextModelWithProjection, + tokenizer: CLIPTokenizer, + tokenizer_2: CLIPTokenizer, + unet: UNet2DConditionModel, + controlnet: ControlNetXSModel, + scheduler: KarrasDiffusionSchedulers, + force_zeros_for_empty_prompt: bool = True, + add_watermarker: Optional[bool] = None, + ): + super().__init__() + + vae_compatible, cnxs_condition_downsample_factor, vae_downsample_factor = controlnet._check_if_vae_compatible( + vae + ) + if not vae_compatible: + raise ValueError( + f"The downsampling factors of the VAE ({vae_downsample_factor}) and the conditioning part of ControlNetXS model {cnxs_condition_downsample_factor} need to be equal. Consider building the ControlNetXS model with different `conditioning_block_sizes`." + ) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + unet=unet, + controlnet=controlnet, + scheduler=scheduler, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt + def encode_prompt( + self, + prompt: str, + prompt_2: Optional[str] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + do_classifier_free_guidance: bool = True, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + clip_skip: Optional[int] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # Define tokenizers and text encoders + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + + # textual inversion: procecss multi-vector tokens if necessary + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {tokenizer.model_max_length} tokens: {removed_text}" + ) + + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + + # We are only ALWAYS interested in the pooled output of the final text encoder + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + # "2" because SDXL always indexes from the penultimate layer. + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + + prompt_embeds_list.append(prompt_embeds) + + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + + # get unconditional embeddings for classifier free guidance + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt_2 = negative_prompt_2 or negative_prompt + + # normalize str to list + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = ( + batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + ) + + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + + negative_prompt_embeds_list = [] + for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer( + negative_prompt, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + negative_prompt_embeds = text_encoder( + uncond_input.input_ids.to(device), + output_hidden_states=True, + ) + # We are only ALWAYS interested in the pooled output of the final text encoder + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + + negative_prompt_embeds_list.append(negative_prompt_embeds) + + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder_2, lora_scale) + + return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + prompt_2, + image, + callback_steps, + negative_prompt=None, + negative_prompt_2=None, + prompt_embeds=None, + negative_prompt_embeds=None, + pooled_prompt_embeds=None, + negative_pooled_prompt_embeds=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + ): + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError( + "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + if ( + isinstance(self.controlnet, ControlNetXSModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetXSModel) + ): + self.check_image(image, prompt, prompt_embeds) + else: + assert False + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetXSModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetXSModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + else: + assert False + + start, end = control_guidance_start, control_guidance_end + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + def prepare_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + ): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance: + image = torch.cat([image] * 2) + + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids + def _get_add_time_ids( + self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None + ): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + + passed_add_embed_dim = ( + self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + ) + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError( + f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." + ) + + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance( + self.vae.decoder.mid_block.attentions[0].processor, + ( + AttnProcessor2_0, + XFormersAttnProcessor, + LoRAXFormersAttnProcessor, + LoRAAttnProcessor2_0, + ), + ) + # if xformers or torch_2_0 is used attention block does not need + # to be in float32 which can save lots of memory + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): + r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. + + The suffixes after the scaling factors represent the stages where they are being applied. + + Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values + that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. + + Args: + s1 (`float`): + Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to + mitigate "oversmoothing effect" in the enhanced denoising process. + s2 (`float`): + Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to + mitigate "oversmoothing effect" in the enhanced denoising process. + b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. + b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. + """ + if not hasattr(self, "unet"): + raise ValueError("The pipeline must have `unet` for using FreeU.") + self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu + def disable_freeu(self): + """Disables the FreeU mechanism if enabled.""" + self.unet.disable_freeu() + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + image: PipelineImageInput = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + guidance_scale: float = 5.0, + negative_prompt: Optional[Union[str, List[str]]] = None, + negative_prompt_2: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + control_guidance_start: float = 0.0, + control_guidance_end: float = 1.0, + original_size: Tuple[int, int] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Tuple[int, int] = None, + negative_original_size: Optional[Tuple[int, int]] = None, + negative_crops_coords_top_left: Tuple[int, int] = (0, 0), + negative_target_size: Optional[Tuple[int, int]] = None, + clip_skip: Optional[int] = None, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders. + image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, + `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The ControlNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be + accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height + and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in + `init`, images must be passed as a list such that each element of the list can be correctly batched for + input to a single ControlNet. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. Anything below 512 pixels won't work well for + [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) + and checkpoints that are not specifically fine-tuned on low resolutions. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. Anything below 512 pixels won't work well for + [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) + and checkpoints that are not specifically fine-tuned on low resolutions. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 5.0): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` + and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, pooled text embeddings are generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt + weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input + argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that calls every `callback_steps` steps during inference. The function is called with the + following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function is called. If not specified, the callback is called at + every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. + control_guidance_start (`float`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. + `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as + explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position + `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting + `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + For most cases, `target_size` should be set to the desired height and width of the generated image. If + not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in + section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + To negatively condition the generation process based on a specific image resolution. Part of SDXL's + micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's + micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + To negatively condition the generation process based on a target image resolution. It should be as same + as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] is + returned, otherwise a `tuple` is returned containing the output images. + """ + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + image, + callback_steps, + negative_prompt, + negative_prompt_2, + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + controlnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + ( + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + ) = self.encode_prompt( + prompt, + prompt_2, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt, + negative_prompt_2, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + lora_scale=text_encoder_lora_scale, + clip_skip=clip_skip, + ) + + # 4. Prepare image + if isinstance(controlnet, ControlNetXSModel): + image = self.prepare_image( + image=image, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=do_classifier_free_guidance, + ) + height, width = image.shape[-2:] + else: + assert False + + # 5. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + + # 6. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7.1 Prepare added time ids & embeddings + if isinstance(image, list): + original_size = original_size or image[0].shape[-2:] + else: + original_size = original_size or image.shape[-2:] + target_size = target_size or (height, width) + + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + + add_time_ids = self._get_add_time_ids( + original_size, + crops_coords_top_left, + target_size, + dtype=prompt_embeds.dtype, + text_encoder_projection_dim=text_encoder_projection_dim, + ) + + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids( + negative_original_size, + negative_crops_coords_top_left, + negative_target_size, + dtype=prompt_embeds.dtype, + text_encoder_projection_dim=text_encoder_projection_dim, + ) + else: + negative_add_time_ids = add_time_ids + + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + + # 8. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + is_unet_compiled = is_compiled_module(self.unet) + is_controlnet_compiled = is_compiled_module(self.controlnet) + is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # Relevant thread: + # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 + if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} + + # predict the noise residual + dont_control = ( + i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end + ) + if dont_control: + noise_pred = self.unet( + sample=latent_model_input, + timestep=t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + added_cond_kwargs=added_cond_kwargs, + return_dict=True, + ).sample + else: + noise_pred = self.controlnet( + base_model=self.unet, + sample=latent_model_input, + timestep=t, + encoder_hidden_states=prompt_embeds, + controlnet_cond=image, + conditioning_scale=controlnet_conditioning_scale, + cross_attention_kwargs=cross_attention_kwargs, + added_cond_kwargs=added_cond_kwargs, + return_dict=True, + ).sample + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + # manually for max memory savings + if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + + if not output_type == "latent": + # make sure the VAE is in float32 mode, as it overflows in float16 + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + + # cast back to fp16 if needed + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + + if not output_type == "latent": + # apply watermark if available + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return StableDiffusionXLPipelineOutput(images=image) diff --git a/utils/dummy_pt_objects.py b/utils/dummy_pt_objects.py index c19b15f2f483..263bcaea5a8d 100644 --- a/utils/dummy_pt_objects.py +++ b/utils/dummy_pt_objects.py @@ -92,6 +92,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) +class ControlNetXSModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch"]) + + class Kandinsky3UNet(metaclass=DummyObject): _backends = ["torch"] diff --git a/utils/dummy_torch_and_transformers_objects.py b/utils/dummy_torch_and_transformers_objects.py index b039cdc72ab6..89fa03e57287 100644 --- a/utils/dummy_torch_and_transformers_objects.py +++ b/utils/dummy_torch_and_transformers_objects.py @@ -737,6 +737,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) +class StableDiffusionControlNetXSPipeline(metaclass=DummyObject): + _backends = ["torch", "transformers"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch", "transformers"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + class StableDiffusionDepth2ImgPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] @@ -1082,6 +1097,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) +class StableDiffusionXLControlNetXSPipeline(metaclass=DummyObject): + _backends = ["torch", "transformers"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch", "transformers"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + class StableDiffusionXLImg2ImgPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"]