forked from harvitronix/five-video-classification-methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
114 lines (99 loc) · 3.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
Train our RNN on bottlecap or prediction files generated from our CNN.
"""
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger
from models import ResearchModels
from data import DataSet
import time
def train(data_type, seq_length, model, saved_model=None,
concat=False, class_limit=None, image_shape=None,
load_to_memory=False):
# Set variables.
nb_epoch = 1000
batch_size = 32
# Helper: Save the model.
checkpointer = ModelCheckpoint(
filepath='./data/checkpoints/' + model + '-' + data_type + \
'.{epoch:03d}-{val_loss:.3f}.hdf5',
verbose=1,
save_best_only=True)
# Helper: TensorBoard
tb = TensorBoard(log_dir='./data/logs')
# Helper: Stop when we stop learning.
early_stopper = EarlyStopping(patience=10)
# Helper: Save results.
timestamp = time.time()
csv_logger = CSVLogger('./data/logs/' + model + '-' + 'training-' + \
str(timestamp) + '.log')
# Get the data and process it.
if image_shape is None:
data = DataSet(
seq_length=seq_length,
class_limit=class_limit
)
else:
data = DataSet(
seq_length=seq_length,
class_limit=class_limit,
image_shape=image_shape
)
# Get samples per epoch.
# Multiply by 0.7 to attempt to guess how much of data.data is the train set.
steps_per_epoch = (len(data.data) * 0.7) // batch_size
if load_to_memory:
# Get data.
X, y = data.get_all_sequences_in_memory(batch_size, 'train', data_type, concat)
X_test, y_test = data.get_all_sequences_in_memory(batch_size, 'test', data_type, concat)
else:
# Get generators.
generator = data.frame_generator(batch_size, 'train', data_type, concat)
val_generator = data.frame_generator(batch_size, 'test', data_type, concat)
# Get the model.
rm = ResearchModels(len(data.classes), model, seq_length, saved_model)
# Fit!
if load_to_memory:
# Use standard fit.
rm.model.fit(
X,
y,
batch_size=batch_size,
validation_data=(X_test, y_test),
verbose=1,
callbacks=[checkpointer, tb, early_stopper, csv_logger],
epochs=nb_epoch)
else:
# Use fit generator.
rm.model.fit_generator(
generator=generator,
steps_per_epoch=steps_per_epoch,
epochs=nb_epoch,
verbose=1,
callbacks=[checkpointer, tb, early_stopper, csv_logger],
validation_data=val_generator,
validation_steps=10)
def main():
"""These are the main training settings. Set each before running
this file."""
model = 'lstm' # see `models.py` for more
saved_model = None # None or weights file
class_limit = None # int, can be 1-101 or None
seq_length = 40
load_to_memory = True # pre-load the sequences into memory
# Chose images or features and image shape based on network.
if model == 'conv_3d' or model == 'crnn':
data_type = 'images'
image_shape = (80, 80, 3)
load_to_memory = False
else:
data_type = 'features'
image_shape = None
# MLP requires flattened features.
if model == 'mlp':
concat = True
else:
concat = False
train(data_type, seq_length, model, saved_model=saved_model,
class_limit=class_limit, concat=concat, image_shape=image_shape,
load_to_memory=load_to_memory)
if __name__ == '__main__':
main()