-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnosedetect_demo.py
38 lines (32 loc) · 1.27 KB
/
nosedetect_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import cv2
import mediapipe as mp
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
cap = cv2.VideoCapture(0)
#cap = cv2.VideoCapture("./test01.mp4")
with mp_face_detection.FaceDetection(
min_detection_confidence=0.7) as face_detection:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
for detection in results.detections:
#mp_drawing.draw_detection(image, detection)
nose = mp_face_detection.get_key_point(detection, mp_face_detection.FaceKeyPoint.NOSE_TIP)
ih,iw,ic = image.shape
x,y = int(nose.x*iw), int(nose.y*ih)
cv2.putText(image,"NOSE", (x,y),cv2.FONT_HERSHEY_PLAIN, 1,(255,0,0),2)
cv2.imshow('MediaPipe Face Detection', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()