forked from TsinghuaAI/CPM-2-Finetune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generation_metrics.py
247 lines (212 loc) · 8.01 KB
/
generation_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# coding=utf-8
import json
import warnings
import numpy as np
import nltk
from typing import List
from collections import Counter
from nltk.translate.bleu_score import corpus_bleu, SmoothingFunction
import itertools
from copy import deepcopy
import torch
class Ngrams(object):
"""
Ngrams datastructure based on `set` or `list`
depending in `exclusive`
"""
def __init__(self, ngrams={}, exclusive=True):
if exclusive:
self._ngrams = set(ngrams)
else:
self._ngrams = list(ngrams)
self.exclusive = exclusive
def add(self, o):
if self.exclusive:
self._ngrams.add(o)
else:
self._ngrams.append(o)
def __len__(self):
return len(self._ngrams)
def intersection(self, o):
if self.exclusive:
inter_set = self._ngrams.intersection(o._ngrams)
return Ngrams(inter_set, exclusive=True)
else:
other_list = deepcopy(o._ngrams)
inter_list = []
for e in self._ngrams:
try:
i = other_list.index(e)
except ValueError:
continue
other_list.pop(i)
inter_list.append(e)
return Ngrams(inter_list, exclusive=False)
def union(self, *ngrams):
if self.exclusive:
union_set = self._ngrams
for o in ngrams:
union_set = union_set.union(o._ngrams)
return Ngrams(union_set, exclusive=True)
else:
union_list = deepcopy(self._ngrams)
for o in ngrams:
union_list.extend(o._ngrams)
return Ngrams(union_list, exclusive=False)
def my_lcs(string, sub):
"""
Calculates longest common subsequence for a pair of tokenized strings
:param string : list of str : tokens from a string split using whitespace
:param sub : list of str : shorter string, also split using whitespace
:returns: length (list of int): length of the longest common subsequence between the two strings
Note: my_lcs only gives length of the longest common subsequence, not the actual LCS
"""
if len(string) < len(sub):
sub, string = string, sub
lengths = [[0 for _ in range(0,len(sub)+1)] for _ in range(0,len(string)+1)]
for j in range(1,len(sub)+1):
for i in range(1, len(string) + 1):
if string[i - 1] == sub[j - 1]:
lengths[i][j] = lengths[i-1][j-1] + 1
else:
lengths[i][j] = max(lengths[i-1][j] , lengths[i][j-1])
return lengths[len(string)][len(sub)]
class Metric(object):
def __init__(self, toker):
self.refs = []
self.hyps = []
self.toker = toker
def forword(self, refs: List[List[str]], hyp: List[str]): # TODO: only applicable to token ids
self.refs.append(refs)
self.hyps.append(hyp)
def calc_bleu_k(self, k):
weights = [1. / k] * k + (4 - k) * [0.]
try:
bleu = corpus_bleu(self.refs, self.hyps, weights=weights,
smoothing_function=SmoothingFunction().method3)
except ZeroDivisionError as _:
warnings.warn('the bleu is invalid')
bleu = 0.
return bleu
def calc_distinct_k(self, k):
d = {}
tot = 0
for sen in self.hyps:
for i in range(0, len(sen)-k):
key = tuple(sen[i:i+k])
d[key] = 1
tot += 1
if tot > 0:
dist = len(d) / tot
else:
warnings.warn('the distinct is invalid')
dist = 0.
return dist
def calc_unigram_f1(self):
f1_scores = []
for hyp, refs in zip(self.hyps, self.refs):
scores = []
for ref in refs:
cross = Counter(hyp) & Counter(ref)
cross = sum(cross.values())
p = cross / max(len(hyp), 1e-10)
r = cross / len(ref)
f1 = 2 * p * r / max(p + r, 1e-10)
scores.append(f1)
f1_scores.append(max(scores))
return np.mean(f1_scores), f1_scores
def calc_rouge_l(self, beta=1.2):
scores = []
for hyp, refs in zip(self.hyps, self.refs):
prec = []
rec = []
for ref in refs:
lcs = my_lcs(ref, hyp)
prec.append(lcs / max(len(hyp), 1e-10))
rec.append(lcs / len(ref))
prec_max = max(prec)
rec_max = max(rec)
if prec_max != 0 and rec_max !=0:
score = ((1 + beta**2)*prec_max*rec_max)/float(rec_max + beta**2*prec_max)
else:
score = 0.0
scores.append(score)
return np.mean(scores), scores
def _get_ngrams(self, n, text, exclusive=True):
"""Calcualtes n-grams.
Args:
n: which n-grams to calculate
text: An array of tokens
Returns:
A set of n-grams
"""
ngram_set = Ngrams(exclusive=exclusive)
text_length = len(text)
max_index_ngram_start = text_length - n
for i in range(max_index_ngram_start + 1):
ngram_set.add(tuple(text[i:i + n]))
return ngram_set
def _get_word_ngrams(self, n, sentences, exclusive=True):
"""Calculates word n-grams for multiple sentences.
"""
assert len(sentences) > 0
assert n > 0
if torch.distributed.get_rank() == 0:
print(sentences)
words = [x for y in sentences for x in y] # flatten the sentences
if torch.distributed.get_rank() == 0:
print("words", words)
return self._get_ngrams(n, words, exclusive=exclusive)
def f_r_p_rouge_n(self, evaluated_count, reference_count, overlapping_count):
# Handle edge case. This isn't mathematically correct, but it's good enough
if reference_count == 0:
recall = 0.0
else:
recall = overlapping_count / reference_count
return recall
def calc_rouge_n(self, n=2, exclusive=True):
"""
Computes ROUGE-N of two text collections of sentences.
Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/
papers/rouge-working-note-v1.3.1.pdf
Args:
evaluated_sentences: The sentences that have been picked by the
summarizer
reference_sentences: The sentences from the referene set
n: Size of ngram. Defaults to 2.
Returns:
A tuple (f1, precision, recall) for ROUGE-N
Raises:
ValueError: raises exception if a param has len <= 0
"""
if len(self.hyps) <= 0:
raise ValueError("Hypothesis is empty.")
if len(self.refs) <= 0:
raise ValueError("Reference is empty.")
evaluated_ngrams = self._get_word_ngrams(n, self.hyps, exclusive=exclusive)
refs = [x[0] for x in self.refs]
reference_ngrams = self._get_word_ngrams(n, refs, exclusive=exclusive)
reference_count = len(reference_ngrams)
evaluated_count = len(evaluated_ngrams)
# Gets the overlapping ngrams between evaluated and reference
overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams)
overlapping_count = len(overlapping_ngrams)
return self.f_r_p_rouge_n(evaluated_count, reference_count, overlapping_count)
def close(self):
result = {
**{f"dist-{k}": 100 * self.calc_distinct_k(k) for k in range(3, 5)},
**{f"bleu-{k}": 100 * self.calc_bleu_k(k) for k in range(4, 5)}
}
f1, scores = self.calc_unigram_f1()
result['f1'] = 100 * f1
result_list = {
'f1': scores
}
rl, scores = self.calc_rouge_l()
result['rouge-l'] = 100 * rl
result_list.update({
'rouge-l': scores
})
result["rouge-1"] = 100 * self.calc_rouge_n(n=1)
result["rouge-2"] = 100 * self.calc_rouge_n(n=2)
return result, result_list