设f(x)
是二次可微实函数,又设$x^{(k)}$是f(x)
一个极小点的估计,我们把f(x)
在$x^{(k)}$展开成Taylor
级数,
并取二阶近似。
上式中最后一项的中间部分表示f(x)
在$x^{(k)}$处的Hesse
矩阵。令上式等于0,可以的到下式:
设Hesse
矩阵可逆,由上式可以得到牛顿法的迭代公式如下**(1.1)**
值得注意 , 当初始点远离极小点时,牛顿法可能不收敛。原因之一是牛顿方向不一定是下降方向,经迭代,目标函数可能上升。此外,即使目标函数下降,得到的点一个不一定沿牛顿方向最好的点或极小点。 因此,我们在牛顿方向上增加一维搜索,提出阻尼牛顿法。其迭代公式是**(1.2)**:
其中,lambda
是由一维搜索(参考文献【1】了解一维搜索)得到的步长,即满足
前面介绍了牛顿法,它的突出优点是收敛很快,但是运用牛顿法需要计算二阶偏导数,而且目标函数的Hesse
矩阵可能非正定。为了克服牛顿法的缺点,人们提出了拟牛顿法,它的基本思想是用不包含二阶导数的矩阵近似牛顿法中的Hesse
矩阵的逆矩阵。
由于构造近似矩阵的方法不同,因而出现不同的拟牛顿法。
下面分析怎样构造近似矩阵并用它取代牛顿法中的Hesse
矩阵的逆。上文**(1.2)**已经给出了牛顿法的迭代公式,为了构造Hesse
矩阵逆矩阵的近似矩阵$H_{(k)}$ ,需要先分析该逆矩阵与一阶导数的关系。
设在第k
次迭代之后,得到$x^{(k+1)}$ ,我们将目标函数f(x)
在点$x^{(k+1)}$展开成Taylor
级数,
并取二阶近似,得到
由此可知,在$x^{(k+1)}$附近有,
记
则有
又设Hesse
矩阵可逆,那么上式可以写为如下形式。
这样,计算出p
和q
之后,就可以通过上面的式子估计Hesse
矩阵的逆矩阵。因此,为了用不包含二阶导数的矩阵$H_{(k+1)}$取代牛顿法中Hesse
矩阵的逆矩阵,有理由令$H_{(k+1)}$满足公式**(2.1)**:
公式**(2.1)**称为拟牛顿条件。
当Hesse
矩阵的逆矩阵是对称正定矩阵时,满足拟牛顿条件的矩阵$H_{(k)}$也应该是对称正定矩阵。构造这样近似矩阵的一般策略是,$H_{(1)}$取为任意一个n
阶对称正定矩阵,通常选择n
阶单位矩阵I
,然后通过修正$H_{(k)}$给定$H_{(k+1)}$。
令,
秩1校正公式写为如下公式**(2.2)**形式。
著名的DFP
方法是Davidon
首先提出,后来又被Feltcher
和Powell
改进的算法,又称为变尺度法。在这种方法中,定义校正矩阵为公式**(2.3)**
那么得到的满足拟牛顿条件的DFP
公式如下**(2.4)**
查看文献【1】,了解DFP
算法的计算步骤。
前面利用拟牛顿条件**(2.1)推导出了DFP
公式(2.4)。下面我们用不含二阶导数的矩阵$B_{(k+1)}$近似Hesse
矩阵,从而给出另一种形式的拟牛顿条件(2.5)**:
将公式**(2.1)的H
换为B
,p
和q
互换正好可以得到公式(2.5)。所以我们可以得到B
的修正公式(2.6)**:
这个公式称关于矩阵B
的BFGS
修正公式,也称为DFP
公式的对偶公式。设$B_{(k+1)}$可逆,由公式**(2.1)以及(2.5)**可以推出:
这样可以得到关于H
的BFGS
公式为下面的公式**(2.7)**:
这个重要公式是由Broyden
,Fletcher
,Goldfard
和Shanno
于1970年提出的,所以简称为BFGS
。数值计算经验表明,它比DFP
公式还好,因此目前得到广泛应用。
在BFGS
算法中,仍然有缺陷,比如当优化问题规模很大时,矩阵的存储和计算将变得不可行。为了解决这个问题,就有了L-BFGS
算法。L-BFGS
即Limited-memory BFGS
。
L-BFGS
的基本思想是只保存最近的m
次迭代信息,从而大大减少数据的存储空间。对照BFGS
,重新整理一下公式:
之前的BFGS
算法有如下公式**(2.8)**
那么同样有
将该式子带入到公式**(2.8)**中,可以推导出如下公式
假设当前迭代为k
,只保存最近的m
次迭代信息,按照上面的方式迭代m
次,可以得到如下的公式**(2.9)**
上面迭代的最终目的就是找到k
次迭代的可行方向,即
为了求可行方向r
,可以使用two-loop recursion
算法来求。该算法的计算过程如下,算法中出现的y
即上文中提到的t
:
算法L-BFGS
的步骤如下所示。
import org.apache.spark.mllib.classification.LogisticRegressionModel
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.optimization.{LBFGS, LogisticGradient, SquaredL2Updater}
import org.apache.spark.mllib.util.MLUtils
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
val numFeatures = data.take(1)(0).features.size
// Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
// Append 1 into the training data as intercept.
val training = splits(0).map(x => (x.label, MLUtils.appendBias(x.features))).cache()
val test = splits(1)
// Run training algorithm to build the model
val numCorrections = 10
val convergenceTol = 1e-4
val maxNumIterations = 20
val regParam = 0.1
val initialWeightsWithIntercept = Vectors.dense(new Array[Double](numFeatures + 1))
//计算LBFGS
val (weightsWithIntercept, loss) = LBFGS.runLBFGS(
training,
new LogisticGradient(),
new SquaredL2Updater(),
numCorrections,
convergenceTol,
maxNumIterations,
regParam,
initialWeightsWithIntercept)
val model = new LogisticRegressionModel(
Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)),
weightsWithIntercept(weightsWithIntercept.size - 1))
// Clear the default threshold.
model.clearThreshold()
// Compute raw scores on the test set.
val scoreAndLabels = test.map { point =>
val score = model.predict(point.features)
(score, point.label)
}
// Get evaluation metrics.
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
val auROC = metrics.areaUnderROC()
loss.foreach(println)
通过上文的实例,LBFGS
通过方法LBFGS.runLBFGS
来实现。我们来看这个入口函数。
def runLBFGS(
data: RDD[(Double, Vector)],
gradient: Gradient,
updater: Updater,
numCorrections: Int,
convergenceTol: Double,
maxNumIterations: Int,
regParam: Double,
initialWeights: Vector): (Vector, Array[Double]) = {
val lossHistory = mutable.ArrayBuilder.make[Double]
val numExamples = data.count()
//计算梯度和损失
val costFun = new CostFun(data, gradient, updater, regParam, numExamples)
val lbfgs = new BreezeLBFGS[BDV[Double]](maxNumIterations, numCorrections, convergenceTol)
val states =
lbfgs.iterations(new CachedDiffFunction(costFun), initialWeights.toBreeze.toDenseVector)
var state = states.next()
while (states.hasNext) {
lossHistory += state.value
state = states.next()
}
lossHistory += state.value
val weights = Vectors.fromBreeze(state.x)
val lossHistoryArray = lossHistory.result()
(weights, lossHistoryArray)
}
上文的CostFun
类用于计算梯度和损失函数的值,我们在梯度下降算法中有介绍。lbfgs.iterations
用于计算权重。下面分别分析这两部分。
private class CostFun(
data: RDD[(Double, Vector)],
gradient: Gradient,
updater: Updater,
regParam: Double,
numExamples: Long) extends DiffFunction[BDV[Double]] {
override def calculate(weights: BDV[Double]): (Double, BDV[Double]) = {
// Have a local copy to avoid the serialization of CostFun object which is not serializable.
val w = Vectors.fromBreeze(weights)
val n = w.size
val bcW = data.context.broadcast(w)
val localGradient = gradient
//通过localGradient.compute计算梯度和损失值
val (gradientSum, lossSum) = data.treeAggregate((Vectors.zeros(n), 0.0))(
seqOp = (c, v) => (c, v) match { case ((grad, loss), (label, features)) =>
val l = localGradient.compute(
features, label, bcW.value, grad)
(grad, loss + l)
},
combOp = (c1, c2) => (c1, c2) match { case ((grad1, loss1), (grad2, loss2)) =>
axpy(1.0, grad2, grad1)
(grad1, loss1 + loss2)
})
//更新权重并计算正则化值
val regVal = updater.compute(w, Vectors.zeros(n), 0, 1, regParam)._2
val loss = lossSum / numExamples + regVal
val gradientTotal = w.copy
//更新权重
axpy(-1.0, updater.compute(w, Vectors.zeros(n), 1, 1, regParam)._1, gradientTotal)
// gradientTotal = gradientSum / numExamples + gradientTotal
axpy(1.0 / numExamples, gradientSum, gradientTotal)
(loss, gradientTotal.toBreeze.asInstanceOf[BDV[Double]])
}
}
localGradient.compute
用于计算每个样本的梯度。不同的损失函数的实现不同。查看逻辑回归了解LogisticGradient
的实现。
updater.compute
用于更新权重值并计算正则化值。最常用的正则化函数是L2
,即下文的SquaredL2Updater
。
class SquaredL2Updater extends Updater {
override def compute(
weightsOld: Vector,
gradient: Vector,
stepSize: Double,
iter: Int,
regParam: Double): (Vector, Double) = {
// w' = w - thisIterStepSize * (gradient + regParam * w)
// w' = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient
val thisIterStepSize = stepSize / math.sqrt(iter)
val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector
//正则化
brzWeights :*= (1.0 - thisIterStepSize * regParam)
//y += x * a,即brzWeights -= gradient * thisInterStepSize
brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)
//norm
val norm = brzNorm(brzWeights, 2.0)
(Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm)
}
}
compute
方法实现的逻辑就是w' = w - thisIterStepSize * (gradient + regParam * w)
。所以,根据stepSize
不同,计算得到的值有区别。
当调用updater.compute(w, Vectors.zeros(n), 0, 1, regParam)
,即stepSize
为0,iter
为1时,regVal
即为权重平方之和norm * norm
。否则权重需要减去thisIterStepSize * (gradient + regParam * w)
。
BreezeLBFGS
使用上文分析的CostFun
计算梯度并迭代更新权重。
val lbfgs = new BreezeLBFGS[BDV[Double]](maxNumIterations, numCorrections, convergenceTol)
val states =
lbfgs.iterations(new CachedDiffFunction(costFun), initialWeights.toBreeze.toDenseVector)
下面重点分析lbfgs.iterations
的实现。
def iterations(f: DF, init: T): Iterator[State] = {
val adjustedFun = adjustFunction(f)
infiniteIterations(f, initialState(adjustedFun, init)).takeUpToWhere(_.converged)
}
//调用infiniteIterations,其中State是一个样本类
def infiniteIterations(f: DF, state: State): Iterator[State] = {
var failedOnce = false
val adjustedFun = adjustFunction(f)
//无限迭代
Iterator.iterate(state) { state => try {
//1 选择梯度下降方向
val dir = chooseDescentDirection(state, adjustedFun)
//2 计算步长
val stepSize = determineStepSize(state, adjustedFun, dir)
//3 更新权重
val x = takeStep(state,dir,stepSize)
//4 利用CostFun.calculate计算损失值和梯度
val (value,grad) = calculateObjective(adjustedFun, x, state.history)
val (adjValue,adjGrad) = adjust(x,grad,value)
val oneOffImprovement = (state.adjustedValue - adjValue)/(state.adjustedValue.abs max adjValue.abs max 1E-6 * state.initialAdjVal.abs)
//5 计算s和t
val history = updateHistory(x,grad,value, adjustedFun, state)
//6 只保存m个需要的s和t
val newAverage = updateFValWindow(state, adjValue)
failedOnce = false
var s = State(x,value,grad,adjValue,adjGrad,state.iter + 1, state.initialAdjVal, history, newAverage, 0)
val improvementFailure = (state.fVals.length >= minImprovementWindow && state.fVals.nonEmpty && state.fVals.last > state.fVals.head * (1-improvementTol))
if(improvementFailure)
s = s.copy(fVals = IndexedSeq.empty, numImprovementFailures = state.numImprovementFailures + 1)
s
} catch {
case x: FirstOrderException if !failedOnce =>
failedOnce = true
logger.error("Failure! Resetting history: " + x)
state.copy(history = initialHistory(adjustedFun, state.x))
case x: FirstOrderException =>
logger.error("Failure again! Giving up and returning. Maybe the objective is just poorly behaved?")
state.copy(searchFailed = true)
}
}
}
看上面的代码注释,它的流程可以分五步来分析。
- 1 选择梯度下降方向
protected def chooseDescentDirection(state: State, fn: DiffFunction[T]):T = {
state.history * state.grad
}
这里的*
是重写的方法,它的实现如下:
def *(grad: T) = {
val diag = if(historyLength > 0) {
val prevStep = memStep.head
val prevGradStep = memGradDelta.head
val sy = prevStep dot prevGradStep
val yy = prevGradStep dot prevGradStep
if(sy < 0 || sy.isNaN) throw new NaNHistory
sy/yy
} else {
1.0
}
val dir = space.copy(grad)
val as = new Array[Double](m)
val rho = new Array[Double](m)
//第一次递归
for(i <- 0 until historyLength) {
rho(i) = (memStep(i) dot memGradDelta(i))
as(i) = (memStep(i) dot dir)/rho(i)
if(as(i).isNaN) {
throw new NaNHistory
}
axpy(-as(i), memGradDelta(i), dir)
}
dir *= diag
//第二次递归
for(i <- (historyLength - 1) to 0 by (-1)) {
val beta = (memGradDelta(i) dot dir)/rho(i)
axpy(as(i) - beta, memStep(i), dir)
}
dir *= -1.0
dir
}
}
非常明显,该方法就是实现了上文提到的two-loop recursion
算法。
- 2 计算步长
protected def determineStepSize(state: State, f: DiffFunction[T], dir: T) = {
val x = state.x
val grad = state.grad
val ff = LineSearch.functionFromSearchDirection(f, x, dir)
val search = new StrongWolfeLineSearch(maxZoomIter = 10, maxLineSearchIter = 10) // TODO: Need good default values here.
val alpha = search.minimize(ff, if(state.iter == 0.0) 1.0/norm(dir) else 1.0)
if(alpha * norm(grad) < 1E-10)
throw new StepSizeUnderflow
alpha
}
这一步对应L-BFGS
的步骤的Step 5
,通过一维搜索计算步长。
- 3 更新权重
protected def takeStep(state: State, dir: T, stepSize: Double) = state.x + dir * stepSize
这一步对应L-BFGS
的步骤的Step 5
,更新权重。
- 4 计算损失值和梯度
protected def calculateObjective(f: DF, x: T, history: History): (Double, T) = {
f.calculate(x)
}
这一步对应L-BFGS
的步骤的Step 7
,利用上文介绍的CostFun.calculate
计算梯度和损失值。并计算出s
和t
。
- 5 计算s和t,并更新history
//计算s和t
protected def updateHistory(newX: T, newGrad: T, newVal: Double, f: DiffFunction[T], oldState: State): History = {
oldState.history.updated(newX - oldState.x, newGrad :- oldState.grad)
}
//添加新的s和t,并删除过期的s和t
protected def updateFValWindow(oldState: State, newAdjVal: Double):IndexedSeq[Double] = {
val interm = oldState.fVals :+ newAdjVal
if(interm.length > minImprovementWindow) interm.drop(1)
else interm
}
【1】陈宝林,最优化理论和算法
【2】[Updating Quasi-Newton Matrices with Limited Storage](docs/Updating Quasi-Newton Matrices with Limited Storage.pdf)
【3】[On the Limited Memory BFGS Method for Large Scale Optimization](docs/On the Limited Memory BFGS Method for Large Scale Optimization.pdf)
【4】L-BFGS算法
【5】BFGS算法