-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
300 lines (255 loc) · 8.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import argparse
import os
import random
import pandas as pd
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import Compose
from libs import models
from libs.checkpoint import resume, save_checkpoint
from libs.class_id_map import get_n_classes
from libs.class_weight import get_class_weight, get_pos_weight
from libs.config import get_config
from libs.dataset import ActionSegmentationDataset, collate_fn
from libs.helper import train, validate
from libs.loss_fn import ActionSegmentationLoss, BoundaryRegressionLoss
from libs.optimizer import get_optimizer
from libs.transformer import TempDownSamp, ToTensor
def get_arguments() -> argparse.Namespace:
"""
parse all the arguments from command line inteface
return a list of parsed arguments
"""
parser = argparse.ArgumentParser(
description="train a network for action recognition"
)
parser.add_argument("config", type=str, help="path of a config file")
parser.add_argument(
"--seed",
type=int,
default=0,
help="a number used to initialize a pseudorandom number generator.",
)
parser.add_argument(
"--resume",
action="store_true",
help="Add --resume option if you start training from checkpoint.",
)
return parser.parse_args()
def main() -> None:
# argparser
args = get_arguments()
# configuration
config = get_config(args.config)
result_path = os.path.dirname(args.config)
seed = args.seed
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
# cpu or cuda
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.backends.cudnn.benchmark = True
# Dataloader
# Temporal downsampling is applied to only videos in 50Salads
downsamp_rate = 2 if config.dataset == "50salads" else 1
train_data = ActionSegmentationDataset(
config.dataset,
transform=Compose([ToTensor(), TempDownSamp(downsamp_rate)]),
mode="trainval" if not config.param_search else "training",
split=config.split,
dataset_dir=config.dataset_dir,
csv_dir=config.csv_dir,
)
train_loader = DataLoader(
train_data,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.num_workers,
drop_last=True if config.batch_size > 1 else False,
collate_fn=collate_fn,
)
# if you do validation to determine hyperparams
if config.param_search:
val_data = ActionSegmentationDataset(
config.dataset,
transform=Compose([ToTensor(), TempDownSamp(downsamp_rate)]),
mode="validation",
split=config.split,
dataset_dir=config.dataset_dir,
csv_dir=config.csv_dir,
)
val_loader = DataLoader(
val_data,
batch_size=1,
shuffle=False,
num_workers=config.num_workers,
collate_fn=collate_fn,
)
# load model
print("---------- Loading Model ----------")
n_classes = get_n_classes(config.dataset, dataset_dir=config.dataset_dir)
model = models.ActionSegmentRefinementFramework(
in_channel=config.in_channel,
n_features=config.n_features,
n_classes=n_classes,
n_stages=config.n_stages,
n_layers=config.n_layers,
n_stages_asb=config.n_stages_asb,
n_stages_brb=config.n_stages_brb,
)
# send the model to cuda/cpu
model.to(device)
optimizer = get_optimizer(
config.optimizer,
model,
config.learning_rate,
momentum=config.momentum,
dampening=config.dampening,
weight_decay=config.weight_decay,
nesterov=config.nesterov,
)
# resume if you want
columns = ["epoch", "lr", "train_loss"]
# if you do validation to determine hyperparams
if config.param_search:
columns += ["val_loss", "cls_acc", "edit"]
columns += [
"segment f1s@{}".format(config.iou_thresholds[i])
for i in range(len(config.iou_thresholds))
]
columns += ["bound_acc", "precision", "recall", "bound_f1s"]
begin_epoch = 0
best_loss = float("inf")
log = pd.DataFrame(columns=columns)
if args.resume:
if os.path.exists(os.path.join(result_path, "checkpoint.pth")):
checkpoint = resume(result_path, model, optimizer)
begin_epoch, model, optimizer, best_loss = checkpoint
log = pd.read_csv(os.path.join(result_path, "log.csv"))
print("training will start from {} epoch".format(begin_epoch))
else:
print("there is no checkpoint at the result folder")
# criterion for loss
if config.class_weight:
class_weight = get_class_weight(
config.dataset,
split=config.split,
dataset_dir=config.dataset_dir,
csv_dir=config.csv_dir,
mode="training" if config.param_search else "trainval",
)
class_weight = class_weight.to(device)
else:
class_weight = None
criterion_cls = ActionSegmentationLoss(
ce=config.ce,
focal=config.focal,
tmse=config.tmse,
gstmse=config.gstmse,
weight=class_weight,
ignore_index=255,
ce_weight=config.ce_weight,
focal_weight=config.focal_weight,
tmse_weight=config.tmse_weight,
gstmse_weight=config.gstmse,
)
pos_weight = get_pos_weight(
dataset=config.dataset,
split=config.split,
csv_dir=config.csv_dir,
mode="training" if config.param_search else "trainval",
).to(device)
criterion_bound = BoundaryRegressionLoss(pos_weight=pos_weight)
# train and validate model
print("---------- Start training ----------")
for epoch in range(begin_epoch, config.max_epoch):
# training
train_loss = train(
train_loader,
model,
criterion_cls,
criterion_bound,
config.lambda_b,
optimizer,
epoch,
device,
)
# if you do validation to determine hyperparams
if config.param_search:
(
val_loss,
cls_acc,
edit_score,
segment_f1s,
bound_acc,
precision,
recall,
bound_f1s,
) = validate(
val_loader,
model,
criterion_cls,
criterion_bound,
config.lambda_b,
device,
config.dataset,
config.dataset_dir,
config.iou_thresholds,
config.boundary_th,
config.tolerance,
)
# save a model if top1 acc is higher than ever
if best_loss > val_loss:
best_loss = val_loss
torch.save(
model.state_dict(),
os.path.join(result_path, "best_loss_model.prm"),
)
# save checkpoint every epoch
save_checkpoint(result_path, epoch, model, optimizer, best_loss)
# write logs to dataframe and csv file
tmp = [epoch, optimizer.param_groups[0]["lr"], train_loss]
# if you do validation to determine hyperparams
if config.param_search:
tmp += [
val_loss,
cls_acc,
edit_score,
]
tmp += segment_f1s
tmp += [
bound_acc,
precision,
recall,
bound_f1s,
]
tmp_df = pd.Series(tmp, index=log.columns)
log = log.append(tmp_df, ignore_index=True)
log.to_csv(os.path.join(result_path, "log.csv"), index=False)
if config.param_search:
# if you do validation to determine hyperparams
print(
"epoch: {}\tlr: {:.4f}\ttrain loss: {:.4f}\tval loss: {:.4f}\tval_acc: {:.4f}\tedit: {:.4f}".format(
epoch,
optimizer.param_groups[0]["lr"],
train_loss,
val_loss,
cls_acc,
edit_score,
)
)
else:
print(
"epoch: {}\tlr: {:.4f}\ttrain loss: {:.4f}".format(
epoch, optimizer.param_groups[0]["lr"], train_loss
)
)
# delete checkpoint
os.remove(os.path.join(result_path, "checkpoint.pth"))
# save models
torch.save(model.state_dict(), os.path.join(result_path, "final_model.prm"))
print("Done!")
if __name__ == "__main__":
main()