forked from Arsey/keras-transfer-learning-for-oxford102
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
115 lines (93 loc) · 3.7 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python
import socket
from threading import Thread
import numpy as np
import os
import argparse
import config
import util
from sklearn.externals import joblib
import traceback
from keras.applications.imagenet_utils import preprocess_input
import time
util.set_img_format()
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, required=True, help='Base model architecture',
choices=[config.MODEL_RESNET50,
config.MODEL_RESNET152,
config.MODEL_INCEPTION_V3,
config.MODEL_VGG16])
args = parser.parse_args()
config.model = args.model
model_module = util.get_model_class_instance()
model = model_module.load()
print('Model loaded')
print('Warming up the model')
start = time.clock()
if util.get_keras_backend_name() != 'tensorflow':
input_shape = (1, 3,) + model_module.img_size
else:
input_shape = (1, ) + model_module.img_size + (3, )
dummpy_img = np.ones(input_shape)
dummpy_img = preprocess_input(dummpy_img)
model.predict(dummpy_img)
end = time.clock()
print('Warming up took {} s'.format(end - start))
print('Trying to load a Novelty Detector')
try:
af = util.get_activation_function(model, model_module.noveltyDetectionLayerName)
print('Activation function is loaded')
novelty_detection_clf = joblib.load(config.get_novelty_detection_model_path())
print('Novelty Detection classifier is loaded')
except Exception as e:
print('Error on loading Novelty Detection classifier', e)
FILE_DOES_NOT_EXIST = '-1'
UNKNOWN_ERROR = '-2'
def handle(clientsocket):
while 1:
buf = clientsocket.recv(config.buffer_size)
if buf == 'exit'.encode():
return # client terminated connection
response = ''
if os.path.isfile(buf):
try:
img = [model_module.load_img(buf)]
out = model.predict(np.array(img))
prediction = np.argmax(out)
top10 = out[0].argsort()[-10:][::-1]
class_indices = dict(zip(config.classes, range(len(config.classes))))
keys = list(class_indices.keys())
values = list(class_indices.values())
answer = keys[values.index(prediction)]
try:
acts = util.get_activations(af, img)
predicted_relativity = novelty_detection_clf.predict(acts)[0]
nd_class = novelty_detection_clf.__classes[predicted_relativity]
except Exception as e:
print(e.message)
nd_class = 'related'
top10_json = "["
for i, t in enumerate(top10):
top10_json += '{"probability":"%s", "class":"%s"}%s' % (
out[0][t], keys[values.index(t)], '' if i == 9 else ',')
top10_json += "]"
response = '{"probability":"%s","class":"%s","relativity":"%s","top10":%s}' % (
out[0][prediction], answer, nd_class, top10_json)
print(response)
except Exception as e:
print('Error', e)
traceback.print_stack()
response = UNKNOWN_ERROR
else:
response = FILE_DOES_NOT_EXIST
clientsocket.sendall(response.encode())
serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
serversocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
serversocket.bind(config.server_address)
serversocket.listen(10000)
print('Ready for requests')
while 1:
# accept connections from outside
(clientsocket, address) = serversocket.accept()
ct = Thread(target=handle, args=(clientsocket,))
ct.run()