-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild.py
executable file
·63 lines (49 loc) · 1.89 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
# svrt is the ``Synthetic Visual Reasoning Test'', an image
# generator for evaluating classification performance of machine
# learning systems, humans and primates.
#
# Copyright (c) 2017 Idiap Research Institute, http://www.idiap.ch/
# Written by Francois Fleuret <[email protected]>
#
# This file is part of svrt.
#
# svrt is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 3 as
# published by the Free Software Foundation.
#
# svrt is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with svrt. If not, see <http://www.gnu.org/licenses/>.
from os import path
from torch.utils.ffi import create_extension
abs_path = path.dirname(path.abspath(__file__))
ffi = create_extension(
'svrt',
headers = [ 'svrt.h' ],
sources = [ 'svrt.c' ],
extra_objects = [ abs_path + '/libsvrt.so' ],
with_cuda = False
)
ffi.build()
extra_py = """
import numpy as np
import torch
def generate_vignettes_full(problem, labels):
if isinstance(labels, np.ndarray):
labels = torch.from_numpy(np.array(labels)).type(torch.LongTensor)
nb_shapes = torch.ByteTensor()
shape_list = torch.FloatTensor()
is_containing = torch.FloatTensor()
intershape_distance = torch.ByteTensor()
x = generate_vignettes_raw(problem, labels, nb_shapes, shape_list, intershape_distance, is_containing)
return x, nb_shapes, shape_list, intershape_distance, is_containing
def generate_vignettes(problem, labels):
return generate_vignettes_full(problem, labels)[0]
"""
with open(path.join('svrt', '__init__.py'), 'a') as f:
f.write(extra_py)