-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProject_Code.py
1270 lines (1048 loc) · 59.4 KB
/
Project_Code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 28 12:56:29 2017
@author: lifen
"""
import requests
import pandas as pd
pd.options.mode.chained_assignment = None
import numpy as np
import networkx as nx
import community
from apyori import apriori
import matplotlib.pyplot as plt
import plotly
plotly.tools.set_credentials_file(username='lifengdi', api_key='4atIfbTtxieiOj2T0UQn')
import plotly.plotly as py
from plotly import tools
import plotly.graph_objs as go
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
import scipy.stats as stats
from sklearn import decomposition
from sklearn.cluster import KMeans
from sklearn import preprocessing
from sklearn.metrics import silhouette_score
from sklearn.cluster import DBSCAN
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn import svm
from sklearn.metrics import roc_curve, auc
from mpl_toolkits.mplot3d import Axes3D
def Data_Collection():
def df1_Collect():
# Endpoint of the first dataset
BaseURL = 'https://api.census.gov/data/timeseries/healthins/sahie'
# Parameters that we selected to collect (Part A, year = 2015)
URLPost = {'get': 'NAME,NIC_PT,NIC_LB90,NIC_UB90,NUI_PT,NUI_LB90,NUI_UB90',
'for': 'county:*',
'in': 'state:*',
'time': '2015'
}
# Scrape data with a json format
response = requests.get(BaseURL, URLPost)
jsontxt = response.json()
# Initialize a dataframe with column names assigned
df = pd.DataFrame(columns = ('County_State','Number_Insured','NInsured_CI_LowerBound','NInsured_CI_UpperBound','Number_Uninsured',
'NUninsured_CI_LowerBound','NUninsured_CI_UpperBound','time'))
# Append data to each column of the dataframe, skip the column name row
for i in range(1,len(jsontxt)):
Location = jsontxt[i][0]
NInsured = jsontxt[i][1]
NIC_LB90 = jsontxt[i][2]
NIC_UB90 = jsontxt[i][3]
NUnisured = jsontxt[i][4]
NUI_LB90 = jsontxt[i][5]
NUI_UB90 = jsontxt[i][6]
time = jsontxt[i][7]
df = df.append({'County_State':Location,'Number_Insured':NInsured,'NInsured_CI_LowerBound':NIC_LB90,'NInsured_CI_UpperBound':NIC_UB90,
'Number_Uninsured':NUnisured,'NUninsured_CI_LowerBound':NUI_LB90,'NUninsured_CI_UpperBound':NUI_UB90,'time':time},ignore_index=True)
# Parameters that we selected to collect (Part B, year = 2013)
URLPost = {'get': 'NAME,NIC_PT,NIC_LB90,NIC_UB90,NUI_PT,NUI_LB90,NUI_UB90',
'for': 'county:*',
'in': 'state:*',
'time': '2013'
}
# Scrape data with a json format
response = requests.get(BaseURL, URLPost)
jsontxt = response.json()
# Continue appending data to each column of the dataframe, skip the column name row
for i in range(1,len(jsontxt)):
Location = jsontxt[i][0]
NInsured = jsontxt[i][1]
NIC_LB90 = jsontxt[i][2]
NIC_UB90 = jsontxt[i][3]
NUnisured = jsontxt[i][4]
NUI_LB90 = jsontxt[i][5]
NUI_UB90 = jsontxt[i][6]
time = jsontxt[i][7]
df = df.append({'County_State':Location,'Number_Insured':NInsured,'NInsured_CI_LowerBound':NIC_LB90,'NInsured_CI_UpperBound':NIC_UB90,
'Number_Uninsured':NUnisured,'NUninsured_CI_LowerBound':NUI_LB90,'NUninsured_CI_UpperBound':NUI_UB90,'time':time},ignore_index=True)
return df
def df2_Collect():
# Endpoint of the second dataset
BaseURL1 = 'https://data.medicare.gov/resource/2kat-xip9.json'
# Parameters that we selected
# URLPost1 = {'$limit':'20000'}
URLPost1 = {'$limit':'20000'}
# Scrape data with a json format
response1 = requests.get(BaseURL1, URLPost1)
jsontxt1 = response1.json()
# Initialize a dataframe with column names assigned
df1 = pd.DataFrame(columns=('Provider_id','County','State','Lower_Payment_Est','Ave_Payment','Higher_Payment_Est', 'Measure_id'))
# Append data to each column of the dataframe
for i in jsontxt1:
try:
County = i['county_name'] # Deal with data without 'county_name' dictionary key
except:
County = np.NaN # Deal with data without 'county_name' dictionary key
State = i['location_state']
Lower_Est = i['lower_estimate']
Higher_Est = i['higher_estimate']
Payment = i['payment']
ID = i['provider_id']
Measure = i['measure_id']
df1 = df1.append({'Provider_id':ID,'County':County,'State':State,'Lower_Payment_Est':Lower_Est,'Ave_Payment':Payment,
'Higher_Payment_Est':Higher_Est,'Measure_id':Measure},ignore_index=True)
return df1
# load the datasets
DF1 = df1_Collect()
DF2 = df2_Collect()
return DF1, DF2
DF1, DF2 = Data_Collection()
#%% Preprocessing
def Data_Preprocessing(DF1, DF2):
# =================================== Data Cleanliness ============================
# This section cheack the cleaniness of each dataset
def No_Mid_Check(a, b, c):
index = list(map(lambda x, y, z: (y < x) and (y > z), a, b, c))
return sum(index)
State_List = ['AL','AK','AZ','AR','CA','CO','CT','DE','FL','GA','HI','ID','IL','IN','IA','KS','KY','LA','ME','MD','MA','MI','MN','MS',
'MO','MT','NE','NV','NH','NJ','NM','NY','NC','ND','OH','OK','OR','PA','RI','SC','SD','TN','TX','UT','VT','VA','WA','WV',
'WI','WY','DISTRICT OF COLUMBIA', 'DC']
def Cleanliness(df):
# Replace all format of missing value by np.NAN
df = df.replace(('N/A','Not Available','',' '), np.NAN)
# Fraction of missing values of each attributes
Frac_NAN = df.isnull().sum(axis=0)/len(df)
# Fraction of noise value of each attributes (exclude the missing values)
# df_N_1 = sum(df['County_State'].dropna().apply(lambda x: len(x.split(', ', 1))) != 2)/len(df) # detect any value cannot split into county and state
df_N_1 = sum(df['County_State'].dropna().apply(lambda x: x == 'District of Columbia'))/len(df) # detect 'District of Columbia', which cannot be splited into county and state
df_N_1 = sum(df['County_State'].dropna().apply(lambda x: x.split(', ', 1)[-1].upper() not in State_List))/len(df) + df_N_1 #detect any state not exsits
df_N_1 = sum(df['County_State'].dropna().apply(lambda x: x.lower().find(' parish') >= 0))/len(df) + df_N_1
df_N_1 = sum(df['County_State'].dropna().apply(lambda x: x.lower().find(' county') >= 0))/len(df) + df_N_1
df_N_1 = sum(df['County_State'].dropna().apply(lambda x: x.lower().find(' census area') >= 0))/len(df) + df_N_1
df_N_1 = sum(df['County_State'].dropna().apply(lambda x: x.lower().find('st.') >= 0))/len(df) + df_N_1
df_N_2 = sum(df['Number_Insured'].dropna().apply(lambda x: not str(x).isdigit()))/len(df) # detect any value that doesn't only contains digits
df_N_2 = No_Mid_Check(df.NInsured_CI_LowerBound, df.Number_Insured, df.NInsured_CI_UpperBound)/len(df)+df_N_2 # decect the average number is out of the upper and lower bound
df_N_3 = sum(df['NInsured_CI_LowerBound'].dropna().apply(lambda x: not str(x).isdigit()))/len(df) # detect any value that doesn't only contains digits
df_N_4 = sum(df['NInsured_CI_UpperBound'].dropna().apply(lambda x: not str(x).isdigit()))/len(df) # detect any value that doesn't only contains digits
df_N_5 = sum(df['Number_Uninsured'].dropna().apply(lambda x: not str(x).isdigit()))/len(df) # detect any value that doesn't only contains digits
df_N_5 = No_Mid_Check(df.NUninsured_CI_LowerBound, df.Number_Uninsured, df.NUninsured_CI_UpperBound)/len(df)+df_N_5
df_N_6 = sum(df['NUninsured_CI_LowerBound'].dropna().apply(lambda x: not str(x).isdigit()))/len(df) # detect any value that doesn't only contains digits
df_N_7 = sum(df['NUninsured_CI_UpperBound'].dropna().apply(lambda x: not str(x).isdigit()))/len(df) # detect any value that doesn't only contains digits
df_N_8 = sum(df['time'].dropna().apply(lambda x: x not in ['2015','2013']))/len(df) # detect any value other than '2015' or '2013', which we set in the URLPost
# Store the fractions into a serie
Frac_Noise = pd.Series((df_N_1,df_N_2,df_N_3,df_N_4,df_N_5,df_N_6,df_N_7,df_N_8), index=('County_State','Number_Insured',
'NInsured_CI_LowerBound','NInsured_CI_UpperBound','Number_Uninsured','NUninsured_CI_LowerBound',
'NUninsured_CI_UpperBound','time'))
# General cleanliness for each attributes by category in a dataframe format and print it
Result = pd.DataFrame({'MissingValue':Frac_NAN,'NoiseValue':Frac_Noise})
print('\n',Result)
# Equal weight for all the attributes and cleanliness categories, and scale it to a 0-100 range
Score = 100*(1-(Result.MissingValue.sum()+Result.NoiseValue.sum())/(2*len(Result)))
print('\nCleanliness Score is',Score)
def Cleanliness1(df1):
# Replace all format of missing value by np.NAN
df1 = df1.replace(('N/A','Not Available','',' '), np.NAN)
# Fraction of missing values of each attribute
Frac_NAN1 = df1.isnull().sum(axis=0)/len(df1)
# Fraction of noise value of each attributes (exclude the missing values)
df1_N_1 = sum(df1['Provider_id'].dropna().apply(lambda x: (not x.isdigit()) or (len(x) != 6)))/len(df1) # detect any value without a 6-digit format
df1_N_2 = sum(df1['County'].dropna().apply(lambda x: not any((y.isalpha() or y.isspace()) for y in x)))/len(df1) # detect any value that doesn't only contains digit and alpha
df1_N_3 = sum(df1['State'].apply(lambda x: (not x.isalpha()) or len(x) != 2))/len(df1) # detect any value without a 2-alpha format
df1_N_4 = sum(df1['Lower_Payment_Est'].dropna().apply(lambda x: any(y.isalpha() for y in str(x))))/len(df1) # detect any value contains alpha
df1_N_5 = sum(df1['Ave_Payment'].dropna().apply(lambda x: any(y.isalpha() for y in str(x))))/len(df1) # detect any value contains alpha
df1_N_5 = No_Mid_Check(df1.Lower_Payment_Est, df1.Ave_Payment, df1.Higher_Payment_Est)/len(df1)+df1_N_5
df1_N_6 = sum(df1['Higher_Payment_Est'].dropna().apply(lambda x: any(y.isalpha() for y in str(x))))/len(df1) # detect any value contains alpha
df1_N_9 = sum(df1['Measure_id'].dropna().apply(lambda x: x.upper() not in ['PAYM_30_PN','PAYM_30_HF','PAYM_90_HIP_KNEE','PAYM_30_AMI']))/len(df1) # detect any value not in the list
# Store the fractions into a serie
Frac_Noise1 = pd.Series((df1_N_1,df1_N_2,df1_N_3,df1_N_4,df1_N_5,df1_N_6,df1_N_9), index=('Provider_id','County','State',
'Lower_Payment_Est','Ave_Payment','Higher_Payment_Est','Measure_id'))
# General cleanliness for each attributes by category in a dataframe format and print it
Result1 = pd.DataFrame({'MissingValue':Frac_NAN1,'NoiseValue':Frac_Noise1})
print('\n',Result1)
# Equal weight for all the attributes and cleanliness categories, and scale it to a 0-100 range
Score1 = 100*(1-(Result1.MissingValue.sum()+Result1.NoiseValue.sum())/(2*len(Result1)))
print('\nCleanliness Score is',Score1)
#%% =================================== Data Cleaning =============================
# This section process the data cleaning
def Mid_Check(df, a, b, c):
index = list(map(lambda x, y, z: (y >= x) and (y <= z), a, b, c))
df = df[index]
return df
# Replace all format of missing value by np.NAN
DF1 = DF1.replace(('N/A','Not Available','',' '), np.NAN)
DF2 = DF2.replace(('N/A','Not Available','',' '), np.NAN)
def Cleaning_1(DF1):
# Drop rows with missing values
df1 = DF1.dropna()
# Make all values in lower cases
df1 = df1.applymap(lambda x: str(x).lower())
# Correct 'district of columbia' to 'washington county, dc'
df1['County_State'] = df1['County_State'].apply(lambda x: x.replace('district of columbia', 'washington county, dc'))
# Drop rows with wrong county_state values
df1 = df1[df1['County_State'].apply(lambda x: len(x.split(', ', 1)) == 2)]
# Correct ' county', ' parish', ' borough', 'st.' in county names to be inconsist with the other dataset
df1['County_State'] = df1['County_State'].apply(lambda x: x.replace(' county', ''))
df1['County_State'] = df1['County_State'].apply(lambda x: x.replace(' parish', ''))
df1['County_State'] = df1['County_State'].apply(lambda x: x.replace(' borough', ''))
df1['County_State'] = df1['County_State'].apply(lambda x: x.replace('st.', 'saint'))
df1['County_State'] = df1['County_State'].apply(lambda x: x.replace(' census area', ''))
# Correct the type of number relative columns to be integer
df1[['Number_Insured','NInsured_CI_LowerBound','NInsured_CI_UpperBound','Number_Uninsured','NUninsured_CI_LowerBound',
'NUninsured_CI_UpperBound']] = df1[['Number_Insured','NInsured_CI_LowerBound','NInsured_CI_UpperBound','Number_Uninsured',
'NUninsured_CI_LowerBound','NUninsured_CI_UpperBound']].astype('int64')
# # View the boxplot of
# df1[['Number_Insured','NInsured_CI_LowerBound','NInsured_CI_UpperBound','Number_Uninsured','NUninsured_CI_LowerBound',
# 'NUninsured_CI_UpperBound']].boxplot() # The top value belongs to Los Angeles County in 2013 and 2015 year, it is not a wrong value
# Check the number of insured is within the 90% confidence interval, drop tows with wrong values
df1 = Mid_Check(df1, df1.NInsured_CI_LowerBound, df1.Number_Insured, df1.NInsured_CI_UpperBound)
# Check the number of uninsured is within the 90% confidence interval, drop tows with wrong values
df1 = Mid_Check(df1, df1.NUninsured_CI_LowerBound, df1.Number_Uninsured, df1.NUninsured_CI_UpperBound)
return df1
def Cleaning_2(DF2):
# Drop rows with missing values
df2 = DF2.dropna()
# Make all values in lower cases
df2 = df2.applymap(lambda x: x.lower())
# Delete '$', ',' and ' ' from payment related columns' values
translator = lambda x: x.translate(str.maketrans(dict.fromkeys('$, ')))
df2[['Lower_Payment_Est','Ave_Payment','Higher_Payment_Est']] = df2[['Lower_Payment_Est','Ave_Payment','Higher_Payment_Est']].applymap(translator)
# Correct the type of number relative columns to be integer
df2[['Lower_Payment_Est','Ave_Payment','Higher_Payment_Est']] = df2[['Lower_Payment_Est','Ave_Payment','Higher_Payment_Est']].astype('int64')
# Check the average payment of a certain care is with the maximum-minimum payment range, drop tows with wrong values
df2 = Mid_Check(df2, df2.Lower_Payment_Est, df2.Ave_Payment, df2.Higher_Payment_Est)
return df2
df1 = Cleaning_1(DF1)
df2 = Cleaning_2(DF2)
# Write dataset to a csv file
with open('Dataset1_Cleaned.csv', 'w') as f:
df1.to_csv(f,index=False)
f.close()
with open('Dataset2_Cleaned.csv', 'w') as f:
df2.to_csv(f,index=False)
f.close()
with open('Dataset1_Original.csv', 'w') as f:
DF1.to_csv(f,index=False)
f.close()
with open('Dataset2_Original.csv', 'w') as f:
DF2.to_csv(f,index=False)
f.close()
# =================================== Processing =============================
def Cleanliness_View(df1, df2, DF1, DF2):
print('\nBefore cleanning:\n')
Cleanliness(DF1)
Cleanliness1(DF2)
print('\nAfter cleanning:\n')
Cleanliness(df1)
Cleanliness1(df2)
# Print the results
print('\nBefore cleanning:\n')
Cleanliness(DF1)
Cleanliness1(DF2)
print('\nAfter cleanning:\n')
Cleanliness(df1)
Cleanliness1(df2)
Cleanliness_View(df1, df2, DF1, DF2)
#%% =============================================== Further cleaning
# Mutual check the county-state combination, make sure two datasets share a key attribute
def County_Check(df1, df2):
# Split the County_State column by the ', ' delimiter
df1['County'], df1['State'] = zip(*df1['County_State'].apply(lambda x: x.split(', ', 1)))
# Check the States and Counties in two data sets mutually matched, remove unsupported County or State rows
df2 = df2[df2['State'].apply(lambda x: x in df1['State'].values)]
df2 = df2[df2['County'].apply(lambda x: x in df1['County'].values)]
return df1, df2
df1, df2 = County_Check(df1, df2)
#%% ===================================== Further cleanning and organizing
def New_Attribute(df1, df2):
# Add a attribute showing combined county and state name in the second data set, which will be the primary key to merge two data sets together
df2['County_State'] = df2.County + ', ' + df2.State
# Add a attribute showing the population
df1['Population'] = df1.Number_Insured + df1.Number_Uninsured
# Add a attribute showing the insurance purchase rate
df1['Insured_rate'] = df1.Number_Insured/df1.Population
return df1, df2
New_Attribute(df1, df2)
#%% ========================= Restructure the datasets, merge to one dataset
def Combine(df1, df2):
# Create a copy of the first data set, which only contains counties that the second data set has as well
df1_1 = df1[df1['County_State'].apply(lambda x: x in df2['County_State'].values)]
df2_1 = df2[df2['County_State'].apply(lambda x: x in df1['County_State'].values)]
# Restructure datasets, make the combination of county and state a unique value
# Average the values in 2013 and 2015
df1_1 = df1_1.groupby(['County_State'], as_index = False).mean()
# Average the payment values from four types of health treatment
df2_1 = df2_1.groupby(['County_State', 'Provider_id'], as_index = False).mean()
# Average the payment values from hosipitals in the same county
df2_1 = df2_1.groupby(['County_State'], as_index = False).mean()
# Merge two dataset together
df_all = df1_1.merge(df2_1, how = 'left', on = ['County_State'])
return df_all
df_all = Combine(df1, df2)
#%% ==================================================== Binning
def Binning(df_all):
df_all['State'] = df_all['County_State'].apply(lambda x: x.split(', ', 1)[-1])
# Create Regions attribute to divide data into 5 parts for 5 regions identified by the National Geographic Society
# Identify 5 regions
west = ['wa','or','ca','nv','id','ut','mt','wy','co','ak','hi']
southwest = ['az','nm','tx','ok']
midwest = ['nd','sd','ne','ks','mn','ia','mo','wi','il','mi','in','oh']
southeast = ['ar','la','ms','tn','ky','al','ga','fl','wv','md','dc','va','nc','sc','de']
northeast = ['pa','nj','ny','ct','ri','ma','vt','me','nh']
# Divid the combined data set into 5 parts for different regions
df_all["Regions"] = df_all["State"]
df_all["Regions"].loc[df_all['State'].isin(west)] = "west"
df_all["Regions"].loc[df_all['State'].isin(southwest)] = "southwest"
df_all["Regions"].loc[df_all['State'].isin(midwest)] = "midwest"
df_all["Regions"].loc[df_all['State'].isin(southeast)] = "southeast"
df_all["Regions"].loc[df_all['State'].isin(northeast)] = "northeast"
df_all["Regions"] = df_all["Regions"].astype('category')
# Check the correlation
# Cor = df_all.corr()
# According the the correlation matrix, we already know some attributes are highly correlated (threshold = 0.85)
# Create 3 equal-width bins on Insured_rate, Ave_Payment and Population attributes for Association Rule section
def ExtremeValue_Bin(Series):
Q3 = Series.quantile(q=0.75)
Q1 = Series.quantile(q=0.25)
Series.loc[Series > (Q3 + 1.5*(Q3 - Q1))] = (Q3 + 1.5*(Q3 - Q1))
Series.loc[Series < (Q3 - 1.5*(Q3 - Q1))] = (Q3 - 1.5*(Q3 - Q1))
return Series
df_all_1 = df_all.copy()
names = ['Very_Low', 'Low', 'Fair', 'High', 'Very_High']
df_all['Insured_rate_EqWidth'], bins = pd.cut(ExtremeValue_Bin(df_all_1['Insured_rate']), 5, retbins=True, labels = names)
names = ['Very_Cheap', 'Cheap', 'Moderate', 'Expensive', 'Very_Expensive']
df_all['Ave_Payment_EqWidth'], bins = pd.cut(ExtremeValue_Bin(df_all_1['Ave_Payment']), 5, retbins=True, labels = names)
names = ['Very_Small', 'Small', 'Medium', 'Large', 'Very_Large']
df_all['Pop_EqWidth'], bins = pd.cut(ExtremeValue_Bin(df_all_1['Population']), 5, retbins=True, labels = names)
return df_all
df_all = Binning(df_all)
def Outlier(df):
NumAttr = df.select_dtypes(include=['int64', 'float64'])
Desc = NumAttr.describe().transpose()
Desc['IQR'] = Desc['75%'] - Desc['25%']
Desc['Lower_R'] = Desc['25%'] - 1.5*Desc['IQR'] # Upper-boundary of range
Desc['Upper_R'] = Desc['75%'] + 1.5*Desc['IQR'] # Lower-boundary of range
for i in NumAttr.columns.values:
index = list(map(lambda x: (x >= Desc.loc[i,'Lower_R']) and (x <= Desc.loc[i,'Upper_R']), df[i]))
df = df[index]
return df
df_all = Outlier(df_all)
# save the dataset into a csv file
with open('df_all.csv', 'w') as f:
df_all.to_csv(f, index=False)
f.close()
return df_all
df_all = Data_Preprocessing(DF1, DF2)
#%% Basic Statistics Analysis
def Basic_Stats(df_all):
# Split the dataset into numeric datasets, categorical datasets
NumAttr = df_all.select_dtypes(include=['int64', 'float64'])
CatAttr = df_all.select_dtypes(include=['category'])
# Show min, max, mean, median, and standard deviation of numeric attributes
Summary1 = pd.DataFrame({'Mean': NumAttr.mean(), 'Median': NumAttr.median(), 'Std': NumAttr.std()})
# Show mode of categorical attributes
Summary2 = pd.DataFrame(CatAttr.mode()).transpose()
Summary2.columns = ['Mode']
# Combine the results of two data sets together, and print the results
print('\nNumeric:\n', Summary1)
print('\nCategorical:\n', Summary2)
# with open('Num.csv', 'w') as f:
# Summary1.to_csv(f)
# f.close()
# with open('Cat.csv', 'w') as f:
# Summary2.to_csv(f)
# f.close()
Basic_Stats(df_all)
#%% ASSOCIATION RULE=============================================================================================
# Create a function better viewing the frequent sets in a dataframe format
def AssociationRule(df_all):
def FrequentSet_Viewer(Results):
df_FSet = pd.DataFrame(columns=('X_Y', 'Support'))
for i in Results:
df_FSet = df_FSet.append({'X_Y': str(i[0])[10:-1], 'Support': i[1]}, ignore_index = True)
print(df_FSet)
# with open('FSet.csv', 'w') as f:
# df_FSet.to_csv(f, index = False)
# f.close()
# Create a function better viewing the association rules in a dataframe format
def AssociationRule_Viewer(Results):
df_ARule = pd.DataFrame(columns=('X_Y', 'X', 'Y', 'Support', 'Confidence'))
for i in Results:
for j in i[2]:
df_ARule = df_ARule.append({'X_Y': str(i[0])[10:-1], 'X': str(j[0])[10:-1], 'Y': str(j[1])[10:-1], 'Support': i[1],
'Confidence':j[2]}, ignore_index = True)
print(df_ARule)
return df_ARule
# To understand characteristics of counties with high insured rate, filter the dataset with high insured rate
transactions = df_all.select_dtypes(include=['category']).as_matrix()
# Set a minimum support threshold at 0.001, and view the results
Results_0 = list(apriori(transactions, min_support = 0.2))
FrequentSet_Viewer(Results_0)
# View the Association Rule results
Results_0 = list(apriori(transactions, min_support = 0.001))
ARule0 = AssociationRule_Viewer(Results_0)
#Filter the Assosiation Rule with {X} equals to {'High'}
ARule1 = ARule0[(ARule0.X != '') & (ARule0.Confidence > 0.75)]
ARule1 = ARule1[ARule1.Y.str.contains('High')]
print(ARule1)
# with open('ARule1.csv', 'w') as f:
# ARule1.to_csv(f, index = False)
#Filter the Assosiation Rule with {Y} is {'High'}
ARule1 = ARule0[(ARule0.X != '') & (ARule0.Confidence > 0.75)]
ARule1 = ARule1[ARule1.Y.str.contains('Low')]
print(ARule1)
# with open('ARule2.csv', 'w') as f:
# ARule1.to_csv(f, index = False)
#
AssociationRule(df_all)
#%% Boxplot
def Boxplot(df_all):
# Create traces for a boxplot
trace1 = go.Box(y = df_all[df_all['Regions'] == 'west']['Insured_rate'], name='West', boxmean = True, jitter = .3)
trace2 = go.Box(y = df_all[df_all['Regions'] == 'southwest']['Insured_rate'], name = "Southwest", boxmean = True, jitter = .3)
trace3 = go.Box(y = df_all[df_all['Regions'] == 'midwest']['Insured_rate'], name='Midwest', boxmean = True, jitter = .3)
trace4 = go.Box(y = df_all[df_all['Regions'] == 'southeast']['Insured_rate'], name='Southeast', boxmean = True, jitter = .3)
trace5 = go.Box(y = df_all[df_all['Regions'] == 'northeast']['Insured_rate'], name='Northeast', boxmean = True, jitter = .3)
# Assign them to an iterable object named data2
data = [trace1, trace2, trace3, trace4, trace5]
# Add title
layout = go.Layout(title = "Box Plots for Insured Rate by Regions")
# Setup figure
fig = go.Figure(data = data, layout = layout)
#Create the boxplot
py.plot(fig, filename = 'boxplot')
Boxplot(df_all)
def Histogram(df_all):
# Create traces for a scatterplot
trace1 = go.Histogram(x = df_all['NInsured_CI_LowerBound'])
trace2 = go.Histogram(x = df_all['Number_Insured'])
trace3 = go.Histogram(x = df_all['NInsured_CI_UpperBound'])
trace4 = go.Histogram(x = df_all['NUninsured_CI_LowerBound'])
trace5 = go.Histogram(x = df_all['Number_Uninsured'])
trace6 = go.Histogram(x = df_all['NUninsured_CI_UpperBound'])
trace7 = go.Histogram(x = df_all['Lower_Payment_Est'])
trace8 = go.Histogram(x = df_all['Ave_Payment'])
trace9 = go.Histogram(x = df_all['Higher_Payment_Est'])
# trace10 = go.Histogram(x = df_all['Population'], xaxis = 'Population')
# trace11 = go.Histogram(x = df_all['Insured_rate'], xaxis = 'Insured Rate')
# Setup figure
fig = tools.make_subplots(rows=3, cols=3, subplot_titles = ('Lower CI of Number of Insured', 'Number of Insured', 'Upper CI of Number of Insured', 'Lower CI of Number of Uninsured',
'Number of Uninsured', 'Upper CI of Number of Insured', 'Lower_Payment_Est', 'Ave_Payment', 'Higher_Payment_Est'))
fig.append_trace(trace1, 1, 1)
fig.append_trace(trace2, 1, 2)
fig.append_trace(trace3, 1, 3)
fig.append_trace(trace4, 2, 1)
fig.append_trace(trace5, 2, 2)
fig.append_trace(trace6, 2, 3)
fig.append_trace(trace7, 3, 1)
fig.append_trace(trace8, 3, 2)
fig.append_trace(trace9, 3, 3)
# fig.append_trace(trace10, 4, 1)
# fig.append_trace(trace11, 4, 2)
fig['layout'].update(title = 'Histogram of Numeric Attributes')
#Create the boxplot
py.plot(fig, filename = 'histogram')
Histogram(df_all)
#%% Correlation Analysis & Clustering Analysis
def Corr_Cluster(df_all):
def encoding(df_all_wyf, colname):
for i in colname:
LabalEncoder = preprocessing.LabelEncoder()
LabalEncoder.fit(df_all_wyf[i])
df_all_wyf[i] = pd.Series(LabalEncoder.transform(df_all_wyf[i]))
return df_all_wyf
#Encode the columns 'Insured_rate_EqWidth','Ave_Payment_EqWidth','Pop_EqWidth','Regions' in df_all_wyf.
col=['Insured_rate_EqWidth','Ave_Payment_EqWidth','Pop_EqWidth','Regions']
df_all_wyf = df_all.copy()
df_all_wyf = encoding(df_all_wyf, col)
#A function that plot histogram for selected variables that we want to investigate.
def getHist(df_all_wyf):
df_all_wyf[['Number_Insured', 'NInsured_CI_LowerBound','NInsured_CI_UpperBound','Number_Uninsured',
'NUninsured_CI_LowerBound','NUninsured_CI_UpperBound','Population','Insured_rate',
'Lower_Payment_Est','Ave_Payment','Higher_Payment_Est','Regions']].hist(layout = (3, 4), figsize = (40, 40))
#A function that plot histogram for selected variables that we want to investigate using Plotly.
def plotlyHist(df_all_wyf):
#Select the name of the variables that we want to investigate.
all_names = ['Number_Insured', 'NInsured_CI_LowerBound','NInsured_CI_UpperBound','Population',
'Number_Uninsured','NUninsured_CI_LowerBound','NUninsured_CI_UpperBound','Insured_rate',
'Lower_Payment_Est','Ave_Payment','Higher_Payment_Est','Regions']
#Draw in Plotly account.
fig = tools.make_subplots(rows=3, cols=4, subplot_titles=all_names)
for i in range(len(all_names)):
tracei = go.Histogram(x=df_all_wyf[all_names[i]],name = all_names[i])
fig.append_trace(tracei, int((i+4)/4), i%4+1)
py.iplot(fig, filename='Histograms for all of the attributes from our data')
#Draw histogram for selected variables that we want to investigate.
getHist(df_all_wyf)
#Plot histogram for selected variables that we want to investigate using Plotly.
plotlyHist(df_all_wyf)
#%% Correlation Analysis
#A function that find the correlation between all the paires of the quantity variables in df_all_wyf.
def getCorr1(df_all_wyf):
#Make correlation coefficient data frame.
corr_val=df_all_wyf.corr()
#Round the coefficient in two decimle points.
corr_val=corr_val.round(2)
#Add a name column containing all of our selected variable name for better comparison of the correlation.
names=corr_val.columns
corr_val.insert(0, 'names', names, allow_duplicates=False)
corr_val.to_csv('corr_val.csv', sep=',')
return corr_val
#Plot the correlation table using plotly.
def plotlyCorr1(corr_val):
#Variable selecton:
names=['names', 'Number_Insured', 'NInsured_CI_LowerBound',
'NInsured_CI_UpperBound', 'Number_Uninsured',
'NUninsured_CI_LowerBound', 'NUninsured_CI_UpperBound', 'Population',
'Insured_rate', 'Lower_Payment_Est', 'Ave_Payment',
'Higher_Payment_Est','Regions']
#Create trace for later plotting
trace = go.Table(
type = 'table',
header=dict(values=names,
align = 'center'),
cells=dict(values=[corr_val.names, corr_val.Number_Insured, corr_val.NInsured_CI_LowerBound, corr_val.NInsured_CI_UpperBound,
corr_val.Number_Uninsured, corr_val.NUninsured_CI_LowerBound,
corr_val.NUninsured_CI_UpperBound, corr_val.Population, corr_val.Insured_rate, corr_val.Lower_Payment_Est, corr_val.Ave_Payment,
corr_val.Higher_Payment_Est, corr_val.Regions],
align = 'center'))
data = [trace]
#Draw the trace using plotly.
py.iplot(data, filename = 'Correlation table')
#Get histogram for selected number of variables that we trimmed down.
def getCorr2(df_all_wyf):
#Select variables.
critical_var=['Ave_Payment','Population', 'Regions','Insured_rate']
#Make correlation coefficient data frame.
corr_val2=df_all_wyf[critical_var].corr()
#Round the coefficient in two decimle points.
corr_val2=corr_val2.round(2)
#Add a name column for better comparison of the correlation.
corr_val2.insert(0, 'names', critical_var, allow_duplicates=False)
return corr_val2
def plotlyCorr2(corr_val):
#Plotly correlation table:
names1=['names','Ave_Payment','Population', 'Regions','Insured_rate']
trace1 = go.Table(
type = 'table',
header=dict(values=names1,
align = 'center'),
cells=dict(values=[corr_val.names,corr_val.Ave_Payment,corr_val.Population,corr_val.Regions,corr_val.Insured_rate],
align = 'center'))
data1 = [trace1]
py.iplot(data1, filename = 'Correlation table for critical variables')
corr_full=getCorr1(df_all_wyf)
plotlyCorr1(corr_full)
corr_sub=getCorr2(df_all_wyf)
plotlyCorr2(corr_sub)
#%%Clustering Analysis
#Normalize data frame.
def normalize(numdata):
x = numdata.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
normalizedDataFrame = pd.DataFrame(x_scaled)
#pprint(normalizedDataFrame[:10])
return normalizedDataFrame
# Kmeans function that returns a array of the cluster label in original dataset order.
def getKmeans(normalizedDataFrame, k):
kmeans = KMeans(n_clusters=k)
cluster_labels_kmeans = kmeans.fit_predict(normalizedDataFrame)
return cluster_labels_kmeans
# Hierarchical Clustering function that returns the linkage matrix.
def getHierarchical_Z(normalizedDataFrame, fig_num):
# generate the linkage matrix
Z = linkage(normalizedDataFrame, 'ward')
def fancy_dendrogram(*args, **kwargs):
plt.figure(fig_num)
max_d = kwargs.pop('max_d', None)
if max_d and 'color_threshold' not in kwargs:
kwargs['color_threshold'] = max_d
annotate_above = kwargs.pop('annotate_above', 0)
ddata = dendrogram(*args, **kwargs)
if not kwargs.get('no_plot', False):
# calculate full dendrogram
plt.title('Hierarchical Clustering Dendrogram (truncated)')
plt.xlabel('cluster size')
plt.ylabel('distance')
for i, d, c in zip(ddata['icoord'], ddata['dcoord'], ddata['color_list']):
x = 0.5 * sum(i[1:3])
y = d[1]
if y > annotate_above:
plt.plot(x, y, 'o', c=c)
plt.annotate("%.3g" % y, (x, y), xytext=(0, -5),
textcoords='offset points',
va='top', ha='center')
if max_d:
plt.axhline(y=max_d, c='k')
return ddata
fancy_dendrogram(
Z,
truncate_mode='lastp',# show only the last p merged clusters
p=2,# show only the last p merged clusters
leaf_rotation=90.,# rotates the x axis labels
leaf_font_size=12.,# font size for the x axis labels
show_contracted=True,# to get a distribution impression in truncated branches
annotate_above=10, # useful in small plots so annotations don't overlap
)
plt.show()
return Z
#DBSCAN function tha returns a array of the cluster label in original dataset order.
def getDBSCAN(normalizedDataFrame,r):
dbscan = DBSCAN(eps=r)
cluster_labels_dbscan = dbscan.fit_predict(normalizedDataFrame)
return cluster_labels_dbscan
#Print the silhouette score
def print_silhouette_score( normalizedDataFrame, cluster_labels ):
silhouette_avg = silhouette_score(normalizedDataFrame, cluster_labels)
print("The average silhouette_score is :", silhouette_avg)
#Draw the result of the PCA decomposition in a 3D scatterplot.
def draw_pca(normalizedDataFrame,cluster_labels,fig_num,plt_name):
import matplotlib.pyplot as plt
fig = plt.figure(fig_num)
ax = fig.add_subplot(111, projection='3d')#set 3d axes.
pca3D = decomposition.PCA(3) #PCA decomposition.
plot_columns = pca3D.fit_transform(normalizedDataFrame)
ax.scatter(xs=plot_columns[:,0], ys=plot_columns[:,1],zs=plot_columns[:,2],zdir='z', s=20, c=cluster_labels)
plt.show()
trace1 = go.Scatter3d(
x=plot_columns[:,0],
y=plot_columns[:,1],
z=plot_columns[:,2],
mode='markers',
marker=dict(
size=5,
color=cluster_labels, # set color to an array/list of desired values
colorscale='Viridis', # choose a colorscale
#opacity=0.8
)
)
data = [trace1]
layout = go.Layout(
margin=dict(
l=0,
r=0,
b=0,
t=0
)
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename=plt_name)
#Concatinate the assigned clusters back to the original dataset and returns two datasets in each cluster.
def assign_clusters( numdata, cluster_labels ):
#Encode the cluster number to 0,1 due to the fact that different clustering machanisms
#might label clusters differently.
LabalEncoder = preprocessing.LabelEncoder()
LabalEncoder.fit(cluster_labels)
cluster_labels = pd.Series(LabalEncoder.transform(cluster_labels))
#Concatinate the cluster label with the original dataset's copy to get a new dataset.
numdata_with_label=numdata
numdata_with_label['cluster_labels'] = cluster_labels
#Seperated the labeled dataset into two datasets in each cluster.
numdata_label_1=numdata_with_label[numdata_with_label.cluster_labels == 0]
numdata_label_2=numdata_with_label[numdata_with_label.cluster_labels == 1]
return (numdata_label_1, numdata_label_2)
#
#Draw the distribution of each attributes in two datasets in each cluster. Draw the distribution
#of each attributes of two datasets in each cluster together in one histogram.
def cluster_distribution( cluster1, cluster2, fig_num,ply_name):
colnames=['Number_Insured','Number_Uninsured','Population','Insured_rate',
'Ave_Payment','Regions']
f,a = plt.subplots(2,3)
plt.figure(fig_num)
a = a.ravel()
for i in range(len(colnames)):
a[i].hist(cluster1[colnames[i]], normed = 1, alpha=0.8, label='Cluster 1')
a[i].hist(cluster2[colnames[i]], normed = 1, alpha=0.8, label='Cluster 2')
a[i].legend(loc='upper right')
a[i].set_title(colnames[i])
plt.show()
#%%
#k mean clustering
#Select the columns that we need to do the clustering on from the encoded dataset.
numdata = df_all_wyf.filter(['Number_Insured','Number_Uninsured','Population','Insured_rate','Ave_Payment','Regions'], axis=1)
#Normalize the dataset as pre-rocessing.
normalizedDataFrame=normalize(numdata)
#Perform Kmeans clustering on the normalized dataset and get the list of clustering label.
cluster_labels_kmeans=getKmeans(normalizedDataFrame,2)
#Calculate the silhouette score for this clustering method.
print_silhouette_score(normalizedDataFrame, cluster_labels_kmeans)
#Plot the 3D-PCA projection.
draw_pca(normalizedDataFrame,cluster_labels_kmeans,3,'K-mean PCA')
#Seperate the original dataset into two datasets in each cluster.
numdata_kmeans_label_1, numdata_kmeans_label_2 = assign_clusters( numdata, cluster_labels_kmeans )
#Draw the distribution of each attributes in two seperated datasets.
cluster_distribution( numdata_kmeans_label_1, numdata_kmeans_label_2,4,'K-mean histogram')
#%% Hierarchical clustering
# generate the linkage matrix
Z=getHierarchical_Z(normalizedDataFrame,5)
#Perform hierarchical clustering on the normalized dataset and get the list of clustering label.
k=2
cluster_labels_hierarchical=fcluster(Z, k, criterion='maxclust')
#Calculate the silhouette score for this clustering method.
print_silhouette_score(normalizedDataFrame, cluster_labels_hierarchical)
#Plot the 3D-PCA projection.
draw_pca(normalizedDataFrame,cluster_labels_hierarchical,6,'Hierarchical PCA')
#Seperate the original dataset into two datasets in each cluster.
numdata_hierarchical_label_1, numdata_hierarchical_label_2= assign_clusters( numdata, cluster_labels_hierarchical )
#Draw the distribution of each attributes in two seperated datasets.
cluster_distribution(numdata_hierarchical_label_1, numdata_hierarchical_label_2,7,'Hierarchical histogram')
#%%Perform DBSCAN clustering on the normalized dataset and get the list of clustering label.
cluster_labels_dbscan=getDBSCAN(normalizedDataFrame,0.17)
#Calculate the silhouette score for this clustering method.
print_silhouette_score(normalizedDataFrame, cluster_labels_dbscan)
#Plot the 3D-PCA projection.
draw_pca(normalizedDataFrame,cluster_labels_dbscan,8,'DBSCAN PCA')
#Seperate the original dataset into two datasets in each cluster.
numdata_dbscan_label_1, numdata_dbscan_label_2= assign_clusters(numdata, cluster_labels_dbscan)
#Draw the distribution of each attributes in two seperated datasets.
cluster_distribution(numdata_dbscan_label_1, numdata_dbscan_label_2,9,'DBSCAN histogram')
Corr_Cluster(df_all)
#%% Machine learning analysis =============================================================================================
def Machine_Learning(df_all):
def T_test(x,y):
twosample_results = stats.ttest_ind(x,y, equal_var=False)
print("Two-way T-Test P = ", twosample_results[1])
# Anova
def ANOVA(x,y):
f_val, p_val = stats.f_oneway(x,y)
print ("One-way ANOVA P =", p_val )
# Setup 10-fold cross validation to evaluate the accuracy of each model
# Split data into 10 parts
# Using cross-validation to each algorithm.
# Add each algorithm and its name to the model array
def Evaluate_model (x,y):
models = []
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('SVM', SVC()))
models.append(('RF',RandomForestClassifier()))
models.append(('NB', MultinomialNB()))
scoring = 'accuracy'
# Evaluate each model, add results to a results array,
# Print the accuracy results (remember these are averages and std )
results = []
names = []
for name, model in models:
kfold = KFold(n_splits = 10, random_state = 7, shuffle=False)
cv_results = cross_val_score(model, x, y, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
# Decision Tree
def Decision_Tree(x1, y1,x2,y2,lb):
y1_orin = lb.inverse_transform(y1)
CART = DecisionTreeClassifier()
CART.fit(x1, y1_orin)
predict_CART = CART.predict(x2)
y2_orin = lb.inverse_transform(y2)
print(accuracy_score(y2_orin , predict_CART))
print(confusion_matrix(y2_orin, predict_CART))
print(classification_report(y2_orin , predict_CART))
return predict_CART
#KNN
def KNN(x1, y1,x2,y2,lb):
y1_orin = lb.inverse_transform(y1)
knn = KNeighborsClassifier()
knn.fit(x1, y1_orin)
predict_knn = knn.predict(x2)
y2_orin = lb.inverse_transform(y2)
print(accuracy_score(y2_orin, predict_knn))
print(confusion_matrix(y2_orin, predict_knn))
print(classification_report(y2_orin, predict_knn))
return predict_knn
# Naive Bayes
def Naive_Bayes(x1, y1,x2,y2,lb):
y1_orin = lb.inverse_transform(y1)
gnb = MultinomialNB()
gnb.fit(x1,y1_orin)
predict_NB = gnb.predict(x2)
y2_orin = lb.inverse_transform(y2)
print(accuracy_score(y2_orin, predict_NB))
print(confusion_matrix(y2_orin, predict_NB))
print(classification_report(y2_orin, predict_NB))
return predict_NB
# SVM
def SVM(x1, y1,x2,y2,lb):
y1_orin = lb.inverse_transform(y1)
clf = svm.SVC(decision_function_shape='ovr')
clf.fit(x1, y1_orin)
predict_SVM = clf.predict(x2)
y2_orin = lb.inverse_transform(y2)
print(accuracy_score(y2_orin, predict_SVM))
print(confusion_matrix(y2_orin, predict_SVM))
print(classification_report(y2_orin, predict_SVM))
return predict_SVM
# Random Forest
def Random_Forest(x1, y1,x2,y2,lb):
y1_orin = lb.inverse_transform(y1)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(x1, y1_orin)
predict_RF = clf.predict(x2)
y2_orin = lb.inverse_transform(y2)
print(accuracy_score(y2_orin, predict_RF))
print(confusion_matrix(y2_orin, predict_RF))
print(classification_report(y2_orin, predict_RF))
return predict_RF
#%% Test Hypothesis 1, Insured numbers has nothing to do with regions.
# Normalize the Number_insured and Number_Uninsured column
X1 = pd.DataFrame(preprocessing.normalize(df_all[['Number_Insured','Number_Uninsured']]))
X2 = df_all['Insured_rate']
# Join the two parts into a objective data
X = pd.concat([X1,X2], axis=1)
# Turn the label column into a one-hot format
Y = df_all.Regions
lb = preprocessing.LabelBinarizer()
Y1 = lb.fit_transform(Y)
# Using cross-validation to divide dataset into training data and test data.
X_train, X_validate, Y_train, Y_validate = train_test_split(X, Y1, test_size = 0.20, random_state = 7)
# Evaluate the 5 machine learning models to use a suitable one to perform analysis
Evaluate_model(X_train, lb.inverse_transform(Y_train))
# Perfrom decision tree