-
Notifications
You must be signed in to change notification settings - Fork 60
/
detect_video.py
217 lines (190 loc) · 8.07 KB
/
detect_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#! /usr/bin/env python
"""Run a YOLO_v2 style detection model on test images."""
from __future__ import print_function
import argparse
import colorsys
import imghdr
import os
import random
import numpy as np
from keras import backend as K
from keras.models import load_model
from PIL import Image, ImageDraw, ImageFont
import cv2
from utils.convert_result import convert_result, draw_helper
parser = argparse.ArgumentParser(
description='Run a YOLO_v2 style detection model on test images..')
parser.add_argument(
'model_path',
help='path to h5 model file containing body'
'of a YOLO_v2 model')
parser.add_argument(
'-a',
'--anchors_path',
help='path to anchors file, defaults to yolo_anchors.txt',
default='model_data/yolo_anchors.txt')
parser.add_argument(
'-c',
'--classes_path',
help='path to classes file, defaults to coco_classes.txt',
default='model_data/coco_classes.txt')
parser.add_argument(
'-t',
'--test_path',
help='path to video',
default='images/video2.mp4')
parser.add_argument(
'-o',
'--output_path',
help='path to output test video',
default='demo.mp4')
parser.add_argument(
'-s',
'--score_threshold',
type=float,
help='threshold for bounding box scores, default .4',
default=.4)
parser.add_argument(
'-iou',
'--iou_threshold',
type=float,
help='threshold for non max suppression IOU, default .5',
default=.5)
parser.add_argument(
'-w',
'--weight_path',
help='whether to use different weights other than the default one',
default=None)
def _main(args):
model_path = args.model_path
assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'
anchors_path = args.anchors_path
classes_path = args.classes_path
test_path = args.test_path
output_path = args.output_path
weight_path = args.weight_path
#if not os.path.exists(output_path):
#print 'Creating output path {}'.format(output_path)
# os.mkdir(output_path)
sess = K.get_session() # TODO: Remove dependence on Tensorflow session.
#classes file should one class one line
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
#anchors should be separated by ,
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
anchors = np.array(anchors).reshape(-1, 2)
yolo_model = load_model(model_path)
if weight_path!=None:
yolo_model.load_weights(weight_path)
# Verify model, anchors, and classes are compatible
num_classes = len(class_names)
num_anchors = len(anchors)
# TODO: Assumes dim ordering is channel last
model_output_channels = yolo_model.layers[-1].output_shape[-1]
assert model_output_channels == num_anchors * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes. ' \
'Specify matching anchors and classes with --anchors_path and ' \
'--classes_path flags.'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Check if model is fully convolutional, assuming channel last order.
model_image_size = yolo_model.layers[0].input_shape[1:3]
is_fixed_size = model_image_size != (None, None)
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / float(len(class_names)), 1., 1.)
for x in range(len(class_names))]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
colors))
random.seed(10101) # Fixed seed for consistent colors across runs.
random.shuffle(colors) # Shuffle colors to decorrelate adjacent classes.
random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
# TODO: Wrap these backend operations with Keras layers.
yolo_outputs = convert_result(yolo_model.output, anchors, len(class_names))
input_image_shape = K.placeholder(shape=(2, ))
boxes, scores, classes = draw_helper(
yolo_outputs,
input_image_shape,
to_threshold=args.score_threshold,
iou_threshold=args.iou_threshold)
video_in = cv2.VideoCapture(test_path)
width, height, FPS = int(video_in.get(3)), int(video_in.get(4)),video_in.get(5)
video_out = cv2.VideoWriter()
video_out.open(output_path, # Filename
cv2.VideoWriter_fourcc(*'DIVX'), # Negative 1 denotes manual codec selection. You can make this automatic by defining the "fourcc codec" with "cv2.VideoWriter_fourcc"
FPS, # 10 frames per second is chosen as a demo, 30FPS and 60FPS is more typical for a YouTube video
(width, height), # The width and height come from the stats of image1
)
#begin from here
while video_in.isOpened():
ret, data = video_in.read()
if ret==False:
break
array = cv2.cvtColor(data,cv2.COLOR_BGR2RGB)
image = Image.fromarray(array,mode='RGB')
if is_fixed_size: # TODO: When resizing we can use minibatch input.
resized_image = image.resize(
tuple(reversed(model_image_size)), Image.BICUBIC)
image_data = np.array(resized_image, dtype='float32')
else:
# Due to skip connection + max pooling in YOLO_v2, inputs must have
# width and height as multiples of 32.
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
resized_image = image.resize(new_image_size, Image.BICUBIC)
image_data = np.array(resized_image, dtype='float32')
print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = sess.run(
[boxes, scores, classes],
feed_dict={
yolo_model.input: image_data,
input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
#print('Found {} boxes for {}'.format(len(out_boxes), image_file))
font = ImageFont.truetype(
font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 300
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
#the result's origin is in top left
print(label, (left, top), (right, bottom))
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=colors[c])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
#image.save(os.path.join(output_path, image_file), quality=90)
video_out.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
print("Done")
sess.close()
video_in.release()
video_out.release()
if __name__ == '__main__':
_main(parser.parse_args())