-
Notifications
You must be signed in to change notification settings - Fork 26
/
gradio_app.py
149 lines (141 loc) · 7.98 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import random
import gradio as gr
from sample import (arg_parse,
sampling,
load_fontdiffuer_pipeline)
def run_fontdiffuer(source_image,
character,
reference_image,
sampling_step,
guidance_scale,
batch_size):
args.character_input = False if source_image is not None else True
args.content_character = character
args.sampling_step = sampling_step
args.guidance_scale = guidance_scale
args.batch_size = batch_size
args.seed = random.randint(0, 10000)
out_image = sampling(
args=args,
pipe=pipe,
content_image=source_image,
style_image=reference_image)
return out_image
if __name__ == '__main__':
args = arg_parse()
args.demo = True
args.ckpt_dir = 'ckpt'
args.ttf_path = 'ttf/KaiXinSongA.ttf'
# load fontdiffuer pipeline
pipe = load_fontdiffuer_pipeline(args=args)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
FontDiffuser
</h1>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<a href="https://yeungchenwa.github.io/"">Zhenhua Yang</a>,
<a href="https://scholar.google.com/citations?user=6zNgcjAAAAAJ&hl=zh-CN&oi=ao"">Dezhi Peng</a>,
<a href="https://github.com/kyxscut"">Yuxin Kong</a>,
<a href="https://github.com/ZZXF11"">Yuyi Zhang</a>,
<a href="https://scholar.google.com/citations?user=IpmnLFcAAAAJ&hl=zh-CN&oi=ao"">Cong Yao</a>,
<a href="http://www.dlvc-lab.net/lianwen/Index.html"">Lianwen Jin</a>†
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<strong>South China University of Technology</strong>, Alibaba DAMO Academy
</h2>
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
[<a href="https://arxiv.org/abs/2312.12142" style="color:blue;">arXiv</a>]
[<a href="https://yeungchenwa.github.io/fontdiffuser-homepage/" style="color:green;">Homepage</a>]
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:green;">Github</a>]
</h3>
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
1.We propose FontDiffuser, which is capable to generate unseen characters and styles, and it can be extended to the cross-lingual generation, such as Chinese to Korean.
</h2>
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
2. FontDiffuser excels in generating complex character and handling large style variation. And it achieves state-of-the-art performance.
</h2>
</div>
""")
gr.Image('figures/result_vis.png')
gr.Image('figures/demo_tips.png')
with gr.Column(scale=1):
with gr.Row():
source_image = gr.Image(width=320, label='[Option 1] Source Image', image_mode='RGB', type='pil')
reference_image = gr.Image(width=320, label='Reference Image', image_mode='RGB', type='pil')
with gr.Row():
character = gr.Textbox(value='隆', label='[Option 2] Source Character')
with gr.Row():
fontdiffuer_output_image = gr.Image(height=200, label="FontDiffuser Output Image", image_mode='RGB', type='pil')
sampling_step = gr.Slider(20, 50, value=20, step=10,
label="Sampling Step", info="The sampling step by FontDiffuser.")
guidance_scale = gr.Slider(1, 12, value=7.5, step=0.5,
label="Scale of Classifier-free Guidance",
info="The scale used for classifier-free guidance sampling")
batch_size = gr.Slider(1, 4, value=1, step=1,
label="Batch Size", info="The number of images to be sampled.")
FontDiffuser = gr.Button('Run FontDiffuser')
gr.Markdown("## <font color=#008000, size=6>Examples that You Can Choose Below⬇️</font>")
with gr.Row():
gr.Markdown("## Examples")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Example 1️⃣: Source Image and Reference Image")
gr.Markdown("### In this mode, we provide both the source image and \
the reference image for you to try our demo!")
gr.Examples(
examples=[['figures/source_imgs/source_灨.jpg', 'figures/ref_imgs/ref_籍.jpg'],
['figures/source_imgs/source_鑻.jpg', 'figures/ref_imgs/ref_鹰.jpg'],
['figures/source_imgs/source_鑫.jpg', 'figures/ref_imgs/ref_壤.jpg'],
['figures/source_imgs/source_釅.jpg', 'figures/ref_imgs/ref_雕.jpg']],
inputs=[source_image, reference_image]
)
with gr.Column(scale=1):
gr.Markdown("## Example 2️⃣: Character and Reference Image")
gr.Markdown("### In this mode, we provide the content character and the reference image \
for you to try our demo!")
gr.Examples(
examples=[['龍', 'figures/ref_imgs/ref_鷢.jpg'],
['轉', 'figures/ref_imgs/ref_鲸.jpg'],
['懭', 'figures/ref_imgs/ref_籍_1.jpg'],
['識', 'figures/ref_imgs/ref_鞣.jpg']],
inputs=[character, reference_image]
)
with gr.Column(scale=1):
gr.Markdown("## Example 3️⃣: Reference Image")
gr.Markdown("### In this mode, we provide only the reference image, \
you can upload your own source image or you choose the character above \
to try our demo!")
gr.Examples(
examples=['figures/ref_imgs/ref_闡.jpg',
'figures/ref_imgs/ref_雕.jpg',
'figures/ref_imgs/ref_豄.jpg',
'figures/ref_imgs/ref_馨.jpg',
'figures/ref_imgs/ref_鲸.jpg',
'figures/ref_imgs/ref_檀.jpg',
'figures/ref_imgs/ref_鞣.jpg',
'figures/ref_imgs/ref_穗.jpg',
'figures/ref_imgs/ref_欟.jpg',
'figures/ref_imgs/ref_籍_1.jpg',
'figures/ref_imgs/ref_鷢.jpg',
'figures/ref_imgs/ref_媚.jpg',
'figures/ref_imgs/ref_籍.jpg',
'figures/ref_imgs/ref_壤.jpg',
'figures/ref_imgs/ref_蜓.jpg',
'figures/ref_imgs/ref_鹰.jpg'],
examples_per_page=20,
inputs=reference_image
)
FontDiffuser.click(
fn=run_fontdiffuer,
inputs=[source_image,
character,
reference_image,
sampling_step,
guidance_scale,
batch_size],
outputs=fontdiffuer_output_image)
demo.launch(debug=True)