graph TD
A[Config Manager] --> B[Data Handler]
B --> C[Optimization Engine]
C --> D[Results Manager]
E[Logger] --> A
E --> B
E --> C
E --> D
- Configuration Manager
- Data Handler
- Optimization Engine
- Results Manager
- Logging System
- Load configuration from JSON
- Validate and preprocess data from CSV
- Execute optimization process
- Generate and store results
- Log all operations
class ConfigManager:
- load_config()
- validate_config()
- get_parameter_space()
- get_optimization_settings()
class DataHandler:
- load_data()
- validate_data()
- preprocess_data()
- get_training_data()
- get_validation_data()
class OptimizationEngine:
- initialize_optimizer()
- define_objective()
- run_optimization()
- evaluate_parameters()
- store_results()
class ResultsManager:
- collect_results()
- format_results()
- save_results()
- generate_reports()
- Python 3.8+
- pandas (data handling)
- numpy (numerical operations)
- optuna (optimization framework)
- pytest (testing)
- logging (system logging)
- Git (version control)
- Black (code formatting)
- pylint (code analysis)
- mypy (type checking)
- pytest-cov (code coverage)
Some suggestions for dependencies:
requirements.txt:
pandas>=1.5.0
numpy>=1.21.0
optuna>=3.0.0
pytest>=7.0.0
pytest-cov>=3.0.0
black>=22.0.0
pylint>=2.15.0
mypy>=1.0.0
graph LR
A[CSV Input] --> B[Data Validator]
B --> C[Preprocessor]
C --> D[Feature Engineering]
D --> E[Training Data]
D --> F[Validation Data]
# Configuration Schema
{
"strategy_name": str,
"parameters": {
"param_name": {
"type": str,
"range": [min, max],
"step": float
}
},
"optimization": {
"method": str,
"trials": int,
"timeout": int
}
}
# Results Schema
{
"best_parameters": dict,
"performance_metrics": dict,
"optimization_history": list,
"metadata": dict
}
- CSV Data Source
- JSON Configuration
- CI/CD Pipeline
- Logging System
graph TD
A[HyperOpt-Trade] --> B[CSV Source]
A --> C[JSON Config]
A --> D[CI/CD Pipeline]
A --> E[Logging System]
graph LR
A[Development] --> B[Testing]
B --> C[Staging]
C --> D[Production]
environments:
development:
python_version: "3.8"
dependencies: "requirements-dev.txt"
testing:
python_version: "3.8"
dependencies: "requirements-test.txt"
production:
python_version: "3.8"
dependencies: "requirements.txt"
-
Input Validation
- JSON schema validation
- CSV data validation
- Parameter range checks
-
Error Handling
- Exception handling
- Error logging
- Graceful degradation
-
Data Protection
- File permissions
- Configuration encryption
- Secure logging
- Parallel Processing
class ParallelOptimizer:
- num_workers: int
- batch_size: int
- initialize_workers()
- distribute_workload()
- collect_results()
- Memory Management
class MemoryManager:
- max_memory: int
- cleanup_threshold: float
- monitor_usage()
- optimize_memory()
-
Execution Time
- Optimization runtime
- Data loading time
- Results generation time
-
Resource Usage
- CPU utilization
- Memory consumption
- Disk I/O
- Feature Development
graph LR
A[Feature Branch] --> B[Development]
B --> C[Testing]
C --> D[Code Review]
D --> E[Merge]
- Testing Strategy
# Test Structure
tests/
├── unit/
│ ├── test_config.py
│ ├── test_data.py
│ └── test_optimizer.py
├── integration/
│ ├── test_pipeline.py
│ └── test_results.py
└── performance/
└── test_optimization.py
src/
├── config/
│ ├── __init__.py
│ └── config_manager.py
├── data/
│ ├── __init__.py
│ └── data_handler.py
├── optimization/
│ ├── __init__.py
│ └── optimizer.py
├── results/
│ ├── __init__.py
│ └── results_manager.py
└── utils/
├── __init__.py
├── logger.py
└── validators.py
-
Code Style
- PEP 8 compliance
- Type hints
- Documentation strings
-
Version Control
- Feature branches
- Semantic versioning
- Commit conventions
-
Documentation
- API documentation
- Architecture updates
- Change logs
This architecture provides a robust foundation for the hyperparameter optimization pipeline while maintaining modularity, scalability, and maintainability. The system is designed to handle various trading strategies efficiently while providing clear integration points with the existing CI/CD pipeline.