-
Notifications
You must be signed in to change notification settings - Fork 44
/
repeated-string-match.py
214 lines (181 loc) · 7.28 KB
/
repeated-string-match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
686. Repeated String Match
Medium
Given two strings a and b, return the minimum number of times you should repeat string a so that string b is a substring of it. If it is impossible for b to be a substring of a after repeating it, return -1.
Notice: string "abc" repeated 0 times is "", repeated 1 time is "abc" and repeated 2 times is "abcabc".
Example 1:
Input: a = "abcd", b = "cdabcdab"
Output: 3
Explanation: We return 3 because by repeating a three times "abcdabcdabcd", b is a substring of it.
Example 2:
Input: a = "a", b = "aa"
Output: 2
Constraints:
1 <= a.length, b.length <= 104
a and b consist of lowercase English letters.
"""
# V0
# IDEA : BRUTE FORCE
# https://leetcode.com/problems/repeated-string-match/discuss/108090/Intuitive-Python-2-liner
# -> if there is a sufficient solution, B must "inside" A
# -> Let n be the answer,
# -> Let x be the theoretical lower bound, which is ceil(len(B)/len(A)).
# -> the value of n can br ONLY "x" or "x + 1"
# -> e.g. : in the case where len(B) is a multiple of len(A) like in A = "abcd" and B = "cdabcdab") and not more. Because if B is already in A * n, B is definitely in A * (n + 1).
# --> So all we need to check whether are:
# -> 1) B in A * x
# or
# -> 2) B in A * (x+1)
# -> return -1 if above contitions are not met
class Solution(object):
def repeatedStringMatch(self, A, B):
sa, sb = len(A), len(B)
x = 1
while (x - 1) * sa <= 2 * max(sa, sb):
if B in A * x:
return x
x += 1
return -1
# V0'
class Solution(object):
def repeatedStringMatch(self, a, b):
# edge case
if not a and b:
return -1
if (not a and not b) or (a == b) or (b in a):
return 1
res = 1
sa = len(a)
sb = len(b)
#while res * sa <= 3 * max(sa, sb): # this condition is OK as well
while (res-1) * sa <= 2 * max(sa, sb):
a_ = res * a
if b in a_:
return res
res += 1
return -1
# V1
# https://leetcode.com/problems/repeated-string-match/discuss/108090/Intuitive-Python-2-liner
# IDEA : BRUTE FORCE
# Let n be the answer, the minimum number of times A has to be repeated.
# For B to be inside A, A has to be repeated sufficient times such that it is at least as long as B (or one more), hence we can conclude that the theoretical lower bound for the answer would be length of B / length of A.
# Let x be the theoretical lower bound, which is ceil(len(B)/len(A)).
# The answer n can only be x or x + 1 (in the case where len(B) is a multiple of len(A) like in A = "abcd" and B = "cdabcdab") and not more. Because if B is already in A * n, B is definitely in A * (n + 1).
# Hence we only need to check whether B in A * x or B in A * (x + 1), and if both are not possible return -1.
class Solution(object):
def repeatedStringMatch(self, A, B):
t = -(-len(B) // len(A)) # Equal to ceil(len(b) / len(a))
return t * (B in A * t) or (t + 1) * (B in A * (t + 1)) or -1
# V1
# https://leetcode.com/problems/repeated-string-match/discuss/108090/Intuitive-Python-2-liner
# IDEA : BRUTE FORCE
# Let n be the answer, the minimum number of times A has to be repeated.
# For B to be inside A, A has to be repeated sufficient times such that it is at least as long as B (or one more), hence we can conclude that the theoretical lower bound for the answer would be length of B / length of A.
# Let x be the theoretical lower bound, which is ceil(len(B)/len(A)).
# The answer n can only be x or x + 1 (in the case where len(B) is a multiple of len(A) like in A = "abcd" and B = "cdabcdab") and not more. Because if B is already in A * n, B is definitely in A * (n + 1).
# Hence we only need to check whether B in A * x or B in A * (x + 1), and if both are not possible return -1.
class Solution(object):
def repeatedStringMatch(self, A, B):
times = -(-len(B) // len(A)) # Equal to ceil(len(b) / len(a))
for i in range(2):
if B in (A * (times + i)):
return times + i
return -1
# V1
# http://bookshadow.com/weblog/2017/10/01/leetcode-repeated-string-match/
class Solution(object):
def repeatedStringMatch(self, A, B):
sa, sb = len(A), len(B)
x = 1
while (x - 1) * sa <= 2 * max(sa, sb):
if B in A * x:
return x
x += 1
return -1
### Test case : dev
# V1'
# https://leetcode.com/problems/repeated-string-match/discuss/224182/Explanation-on-the-Intuitive-Python-2-liner-solution
class Solution:
def repeatedStringMatch(self, A, B):
r = math.ceil(len(B) / len(A))
for a in [r, r + 1]:
if B in A * a:
return a
return -1
# V1'
# https://leetcode.com/problems/repeated-string-match/solution/
# IDEA : BRUTE FORCE
# time complexity : O(N*(M+N))
# space complexity : O(M+N)
class Solution(object):
def repeatedStringMatch(self, A, B):
q = (len(B) - 1) // len(A) + 1
for i in range(2):
if B in A * (q+i): return q+i
return -1
# V1''
# https://leetcode.com/problems/repeated-string-match/solution/
# IDEA : Rabin-Karp (Rolling Hash)
class Solution(object):
def repeatedStringMatch(self, A, B):
def check(index):
return all(A[(i + index) % len(A)] == x
for i, x in enumerate(B))
q = (len(B) - 1) // len(A) + 1
p, MOD = 113, 10**9 + 7
p_inv = pow(p, MOD-2, MOD)
power = 1
b_hash = 0
for x in map(ord, B):
b_hash += power * x
b_hash %= MOD
power = (power * p) % MOD
a_hash = 0
power = 1
for i in xrange(len(B)):
a_hash += power * ord(A[i % len(A)])
a_hash %= MOD
power = (power * p) % MOD
if a_hash == b_hash and check(0): return q
power = (power * p_inv) % MOD
for i in xrange(len(B), (q+1) * len(A)):
a_hash = (a_hash - ord(A[(i - len(B)) % len(A)])) * p_inv
a_hash += power * ord(A[i % len(A)])
a_hash %= MOD
if a_hash == b_hash and check(i - len(B) + 1):
return q if i < q * len(A) else q+1
return -1
# V2
# Rabin-Karp Algorithm (rolling hash)
class Solution(object):
def repeatedStringMatch(self, A, B):
"""
:type A: str
:type B: str
:rtype: int
"""
def check(index):
return all(A[(i+index) % len(A)] == c
for i, c in enumerate(B))
M, p = 10**9+7, 113
p_inv = pow(p, M-2, M)
q = (len(B)+len(A)-1) // len(A)
b_hash, power = 0, 1
for c in B:
b_hash += power * ord(c)
b_hash %= M
power = (power*p) % M
a_hash, power = 0, 1
for i in range(len(B)):
a_hash += power * ord(A[i%len(A)])
a_hash %= M
power = (power*p) % M
if a_hash == b_hash and check(0): return q
power = (power*p_inv) % M
for i in range(len(B), (q+1)*len(A)):
a_hash = (a_hash-ord(A[(i-len(B))%len(A)])) * p_inv
a_hash += power * ord(A[i%len(A)])
a_hash %= M
if a_hash == b_hash and check(i-len(B)+1):
return q if i < q*len(A) else q+1
return -1