-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathnext_greater_element_i.py
189 lines (162 loc) · 6.34 KB
/
next_greater_element_i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
496. Next Greater Element I
Easy
The next greater element of some element x in an array is the first greater element that is to the right of x in the same array.
You are given two distinct 0-indexed integer arrays nums1 and nums2, where nums1 is a subset of nums2.
For each 0 <= i < nums1.length, find the index j such that nums1[i] == nums2[j] and determine the next greater element of nums2[j] in nums2. If there is no next greater element, then the answer for this query is -1.
Return an array ans of length nums1.length such that ans[i] is the next greater element as described above.
Example 1:
Input: nums1 = [4,1,2], nums2 = [1,3,4,2]
Output: [-1,3,-1]
Explanation: The next greater element for each value of nums1 is as follows:
- 4 is underlined in nums2 = [1,3,4,2]. There is no next greater element, so the answer is -1.
- 1 is underlined in nums2 = [1,3,4,2]. The next greater element is 3.
- 2 is underlined in nums2 = [1,3,4,2]. There is no next greater element, so the answer is -1.
Example 2:
Input: nums1 = [2,4], nums2 = [1,2,3,4]
Output: [3,-1]
Explanation: The next greater element for each value of nums1 is as follows:
- 2 is underlined in nums2 = [1,2,3,4]. The next greater element is 3.
- 4 is underlined in nums2 = [1,2,3,4]. There is no next greater element, so the answer is -1.
Constraints:
1 <= nums1.length <= nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 104
All integers in nums1 and nums2 are unique.
All the integers of nums1 also appear in nums2.
Follow up: Could you find an O(nums1.length + nums2.length) solution?
"""
# V0
# IDEA : STACK (for + while loop)
class Solution(object):
def nextGreaterElement(self, nums1, nums2):
# edge case
if not nums2 or (not nums1 and not nums2):
return nums1
res = []
# NOTE : the trick here (found as a flag)
found = False
for i in nums1:
#print ("i = " + str(i) + " res = " + str(res))
idx = nums2.index(i)
# start from "next" element in nums2
# here we init tmp _nums2
_nums2 = nums2[idx+1:]
# while loop keep pop _nums2 for finding the next bigger element
while _nums2:
tmp = _nums2.pop(0)
# if found, then append to res, and break the while loop directly
if tmp > i:
found = True
res.append(tmp)
break
# if not found, we need to append -1 to res
if not found:
res.append(-1)
found = False
return res
# V0'
# IDEA : double for loop (one of loops is INVERSE ORDERING) + case conditions op
class Solution(object):
def nextGreaterElement(self, nums1, nums2):
res = [None for _ in range(len(nums1))]
tmp = []
for i in range(len(nums1)):
### NOTE : from last idx to 0 idx. (Note the start and end idx)
for j in range(len(nums2)-1, -1, -1):
#print ("i = " + str(i) + " j = " + str(j) + " tmp = " + str(tmp))
# case 1) No "next greater element" found in nums2
if not tmp and nums2[j] == nums1[i]:
res[i] = -1
break
# case 2) found "next greater element" in nums2, keep inverse looping
elif nums2[j] > nums1[i]:
tmp.append(nums2[j])
# case 3) already reach same element in nums2 (as nums1), pop "last" "next greater element", paste to res, break the loop
elif tmp and nums2[j] == nums1[i]:
_tmp = tmp.pop(-1)
res[i] = _tmp
tmp = []
break
return res
# V1
# IDEA : same as LC 739 Daily Temperatures.
# https://leetcode.com/problems/next-greater-element-i/discuss/183740/Python-solution
class Solution:
def nextGreaterElement(self, nums1, nums2):
if not nums1:
return []
res = [-1] * len(nums1)
stack = []
dic = {}
for i in range(len(nums2)-1, -1, -1):
while stack and stack[-1] < nums2[i]:
stack.pop()
if not stack:
dic[nums2[i]] = -1
else:
dic[nums2[i]] = stack[-1]
stack.append(nums2[i])
for i in range(len(nums1)):
res[i] = dic[nums1[i]]
return res
# V1'
# https://leetcode.com/problems/next-greater-element-i/discuss/97691/straightforward-python-solution
class Solution:
def nextGreaterElement(self, findNums, nums):
def helper(num):
for tmp in nums[nums.index(num):]:
if tmp > num:
return tmp
return -1
return map(helper, findNums)
# V1'
# https://leetcode.com/problems/next-greater-element-i/discuss/143065/Python-solution
class Solution(object):
def nextGreaterElement(self, findNums, nums):
stack, res, nn_dic = [], [], {} # nn is next number
for n in reversed(nums):
# print stack
while stack and stack[-1] < n:
stack.pop()
if stack:
nn_dic[n] = stack[-1]
else:
nn_dic[n] = -1
stack.append(n)
for n in findNums:
res.append(nn_dic[n])
return res
# V1'
# https://blog.techbridge.cc/2019/10/26/leetcode-pattern-next-greater-element/
# C++ stack
# class Solution {
# public:
# vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {
# // Use a hash table to store the <value, idx>
# unordered_map<int, int> table;
# for(int i = 0; i < nums1.size(); ++i) {
# table[ nums1[i] ] = i;
# }
#
# // Use a stack to get next greater element efficiently
# vector<int> ans(nums1.size(), -1);
# stack<int> st;
# for(int i = 0; i < nums2.size(); ++i) {
# while( !st.empty() and st.top() < nums2[i] ) {
# int cur = st.top();
# st.pop();
#
# // If cur exists in table, it means cur is in nums1
# // so we should update nums2[i] as the next greater element of cur
# if(table.count(cur)) {
# ans[ table[cur] ] = nums2[i];
# }
# }
#
# st.push(nums2[i]);
# }
#
# return ans;
# }
# };
# V2