-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy paththe-maze.py
219 lines (183 loc) · 6.68 KB
/
the-maze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
[LeetCode] 490. The Maze
# https://www.cnblogs.com/grandyang/p/6381458.html
There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction.
Given the ball's start position, the destination and the maze, determine whether the ball could stop at the destination.
The maze is represented by a binary 2D array. 1 means the wall and 0 means the empty space. You may assume that the borders of the maze are all walls. The start and destination coordinates are represented by row and column indexes.
Example 1
Input 1: a maze represented by a 2D array
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0
Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (4, 4)
Output: true
Explanation: One possible way is : left -> down -> left -> down -> right -> down -> right.
Example 2
Input 1: a maze represented by a 2D array
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0
Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (3, 2)
Output: false
Explanation: There is no way for the ball to stop at the destination.
Note:
There is only one ball and one destination in the maze.
Both the ball and the destination exist on an empty space, and they will not be at the same position initially.
The given maze does not contain border (like the red rectangle in the example pictures), but you could assume the border of the maze are all walls.
The maze contains at least 2 empty spaces, and both the width and height of the maze won't exceed 100.
"""
# V0
# IDEA : DFS
class Solution(object):
def hasPath(self, maze, start, destination):
def dfs(x, y):
# return if the ball can stop at destination if starting at (x, y)
if [x,y] == destination:
return True
### beware of this
if (x, y) in visited:
return False
visited.add((x, y))
### beware of this : for -> while
for dx, dy in [(-1,0),(1,0),(0,-1),(0,1)]:
new_x, new_y = x, y
# the ball rolls until hitting a wall
while 0 <= new_x+dx < row and 0 <= new_y+dy < col and maze[new_x+dx][new_y+dy] == 0: ### beware of this
new_x += dx
new_y += dy
if dfs(new_x, new_y):
### beware of this
return True
return False
row, col = len(maze), len(maze[0])
visited = set()
return dfs(start[0], start[1])
# V0'
# IDEA : BFS
class Solution:
def hasPath(self, maze, start, destination):
# write your code here
Q = [start]
n = len(maze)
m = len(maze[0])
dirs = ((0, 1), (0, -1), (1, 0), (-1, 0))
while Q:
i, j = Q.pop(0)
maze[i][j] = 2
if i == destination[0] and j == destination[1]:
return True
for x, y in dirs:
row = i + x
col = j + y
### NOTICE : THE OPTIMIZATION HERE
while 0 <= row < n and 0 <= col < m and maze[row][col] != 1:
row += x
col += y
row -= x
col -= y
if maze[row][col] == 0:
Q.append([row, col])
return False
# V1
# https://blog.csdn.net/danspace1/article/details/88773383
# IDEA : DFS
class Solution(object):
def hasPath(self, maze, start, destination):
"""
:type maze: List[List[int]]
:type start: List[int]
:type destination: List[int]
:rtype: bool
"""
def dfs(x, y):
# return if the ball can stop at destination if starting at (x, y)
if [x,y] == destination:
return True
if (x, y) in visited:
return False
visited.add((x, y))
for dx, dy in [(-1,0),(1,0),(0,-1),(0,1)]:
new_x, new_y = x, y
# the ball rolls until hitting a wall
while 0 <= new_x+dx < row and 0 <= new_y+dy < col and maze[new_x+dx][new_y+dy] == 0:
new_x += dx
new_y += dy
if dfs(new_x, new_y):
return True
return False
row, col = len(maze), len(maze[0])
visited = set()
return dfs(start[0], start[1])
### TEST CASE : dev
# V1'
# https://www.jiuzhang.com/solution/the-maze/#tag-highlight-lang-python
# IDEA : BFS
class Solution:
"""
@param maze: the maze
@param start: the start
@param destination: the destination
@return: whether the ball could stop at the destination
"""
def hasPath(self, maze, start, destination):
# write your code here
Q = [start]
n = len(maze)
m = len(maze[0])
dirs = ((0, 1), (0, -1), (1, 0), (-1, 0))
while Q:
i, j = Q.pop(0)
maze[i][j] = 2
if i == destination[0] and j == destination[1]:
return True
for x, y in dirs:
row = i + x
col = j + y
### NOTICE : THE OPTIMIZATION HERE
while 0 <= row < n and 0 <= col < m and maze[row][col] != 1:
row += x
col += y
row -= x
col -= y
if maze[row][col] == 0:
Q.append([row, col])
return False
# V2
# Time: O(max(r, c) * w)
# Space: O(w)
import collections
class Solution(object):
def hasPath(self, maze, start, destination):
"""
:type maze: List[List[int]]
:type start: List[int]
:type destination: List[int]
:rtype: bool
"""
def neighbors(maze, node):
for i, j in [(-1, 0), (0, 1), (0, -1), (1, 0)]:
x, y = node
while 0 <= x + i < len(maze) and \
0 <= y + j < len(maze[0]) and \
not maze[x+i][y+j]:
x += i
y += j
yield x, y
start, destination = tuple(start), tuple(destination)
queue = collections.deque([start])
visited = set()
while queue:
node = queue.popleft()
if node in visited: continue
if node == destination:
return True
visited.add(node)
for neighbor in neighbors(maze, node):
queue.append(neighbor)
return False