-
Notifications
You must be signed in to change notification settings - Fork 44
/
pascals-triangle.py
156 lines (143 loc) · 3.99 KB
/
pascals-triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Time: O(n^2)
# Space: O(1)
#
# Given numRows, generate the first numRows of Pascal's triangle.
#
# For example, given numRows = 5,
# Return
#
# [
# [1],
# [1,1],
# [1,2,1],
# [1,3,3,1],
# [1,4,6,4,1]
# ]
#
# V0
# V1
# https://blog.csdn.net/coder_orz/article/details/51589254
# IDEA : CONSIDER EACH ROW OF PASCALS TRIANGLE (n > 1)
# ARE ALWAYS STARTING AND AND END WITH 1, i.e. [1,a,b,c,...,1]
# [
# [1],
# [1,1],
# [1,2,1],
# [1,3,3,1],
# [1,4,6,4,1]
# ]
# GIVEN res[i][j] = res[i-1][j-1] + res[i-1][j]
# -> res[2] = [1,2,1]
# -> res[3] =[1,3,3,1] = [1,res[2][0]+res[2][1],res[2][1]+res[2][2],1]
# DEMO
# In [21]: numRows = 5
# ...: res = []
# ...: for i in range(0, numRows):
# ...: res.append([1]*(i+1))
# ...:
# ...: print (res)
# ...:
# [[1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1, 1]]
class Solution(object):
def generate(self, numRows):
"""
:type numRows: int
:rtype: List[List[int]]
"""
res = []
for i in range(0, numRows):
res.append([1]*(i+1))
# for j in range(1, i) -> make sure j start only when i >= 2
for j in range(1, i):
res[i][j] = res[i-1][j-1] + res[i-1][j]
return res
# V1'
# https://blog.csdn.net/coder_orz/article/details/51589254
# IDEA : PASCALS RULE
class Solution(object):
def generate(self, numRows):
"""
:type numRows: int
:rtype: List[List[int]]
"""
if numRows == 0:
return []
res = [[1]]
for i in range(1, numRows):
res.append([])
for j in range(i+1):
res[i].append((res[i-1][j-1] if j>0 else 0) + (res[i-1][j] if j<i else 0))
return res
# V1''
# https://blog.csdn.net/coder_orz/article/details/51589254
# IDEA : MAP
# IDEA : FOR PASCALS TRIANGLE P(n)
# -> p(n) = P(n-1) + shift(P(n-1))
# i.e.
# 1 3 3 1 0
# + 0 1 3 3 1
# ------------------
# = 1 4 6 4 1
class Solution(object):
def generate(self, numRows):
"""
:type numRows: int
:rtype: List[List[int]]
"""
res = [[1]]
for i in range(1, numRows):
res += [map(lambda x, y: x+y, res[-1] + [0], [0] + res[-1])]
return res[:numRows]
# V1'''
# IDEA : RECURSION
# https://stackoverflow.com/questions/30036082/creating-pascals-triangle-using-python-recursion
class Solution(object):
def pascals_triangle(self, rows):
def combination(n, k):
if k == 0 or k == n:
return 1
return combination(n - 1, k - 1) + combination(n - 1, k)
for row in range(rows):
answer = ""
for column in range( row + 1):
answer = answer + str(combination(row, column)) + "\t"
print(answer)
# V2
# Time: O(n^2)
# Space: O(1)
class Solution(object):
# @return a list of lists of integers
def generate(self, numRows):
result = []
for i in range(numRows):
result.append([])
for j in range(i + 1):
if j in (0, i):
result[i].append(1)
else:
result[i].append(result[i - 1][j - 1] + result[i - 1][j])
return result
def generate2(self, numRows):
if not numRows: return []
res = [[1]]
for i in range(1, numRows):
res += [map(lambda x, y: x + y, res[-1] + [0], [0] + res[-1])]
return res[:numRows]
def generate3(self, numRows):
"""
:type numRows: int
:rtype: List[List[int]]
"""
if numRows == 0: return []
if numRows == 1: return [[1]]
res = [[1], [1, 1]]
def add(nums):
res = nums[:1]
for i, j in enumerate(nums):
if i < len(nums) - 1:
res += [nums[i] + nums[i + 1]]
res += nums[:1]
return res
while len(res) < numRows:
res.extend([add(res[-1])])
return res