-
Notifications
You must be signed in to change notification settings - Fork 0
/
activations.py
186 lines (141 loc) · 6.54 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
from packaging import version
from torch import Tensor, nn
# from .utils import logging
# logger = logging.get_logger(__name__)
class NewGELUActivation(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
def forward(self, input: Tensor) -> Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
class GELUActivation(nn.Module):
"""
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
def __init__(self, use_gelu_python: bool = False):
super().__init__()
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.4") or use_gelu_python:
self.act = self._gelu_python
else:
self.act = nn.functional.gelu
def _gelu_python(self, input: Tensor) -> Tensor:
return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
def forward(self, input: Tensor) -> Tensor:
return self.act(input)
class FastGELUActivation(nn.Module):
"""
Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
"""
def forward(self, input: Tensor) -> Tensor:
return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
class QuickGELUActivation(nn.Module):
"""
Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
"""
def forward(self, input: Tensor) -> Tensor:
return input * torch.sigmoid(1.702 * input)
class ClippedGELUActivation(nn.Module):
"""
Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
https://arxiv.org/abs/2004.09602.
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
initially created.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
"""
def __init__(self, min: float, max: float):
if min > max:
raise ValueError(f"min should be < max (got min: {min}, max: {max})")
super().__init__()
self.min = min
self.max = max
def forward(self, x: Tensor) -> Tensor:
return torch.clip(gelu(x), self.min, self.max)
class SiLUActivation(nn.Module):
"""
See Gaussian Error Linear Units (Hendrycks et al., https://arxiv.org/abs/1606.08415) where the SiLU (Sigmoid Linear
Unit) was originally introduced and coined, and see Sigmoid-Weighted Linear Units for Neural Network Function
Approximation in Reinforcement Learning (Elfwing et al., https://arxiv.org/abs/1702.03118) and Swish: a Self-Gated
Activation Function (Ramachandran et al., https://arxiv.org/abs/1710.05941v1) where the SiLU was experimented with
later.
"""
def __init__(self):
super().__init__()
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
self.act = self._silu_python
else:
self.act = nn.functional.silu
def _silu_python(self, input: Tensor) -> Tensor:
return input * torch.sigmoid(input)
def forward(self, input: Tensor) -> Tensor:
return self.act(input)
class MishActivation(nn.Module):
"""
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
visit the official repository for the paper: https://github.com/digantamisra98/Mish
"""
def __init__(self):
super().__init__()
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.9"):
self.act = self._mish_python
else:
self.act = nn.functional.mish
def _mish_python(self, input: Tensor) -> Tensor:
return input * torch.tanh(nn.functional.softplus(input))
def forward(self, input: Tensor) -> Tensor:
return self.act(input)
class LinearActivation(nn.Module):
"""
Applies the linear activation function, i.e. forwarding input directly to output.
"""
def forward(self, input: Tensor) -> Tensor:
return input
ACT2FN = {
"gelu": GELUActivation(),
"gelu_10": ClippedGELUActivation(-10, 10),
"gelu_fast": FastGELUActivation(),
"gelu_new": NewGELUActivation(),
"gelu_python": GELUActivation(use_gelu_python=True),
"linear": LinearActivation(),
"mish": MishActivation(),
"quick_gelu": QuickGELUActivation(),
"relu": nn.ReLU(),
"sigmoid": nn.Sigmoid(),
"silu": SiLUActivation(),
"swish": SiLUActivation(),
"tanh": nn.Tanh(),
}
def get_activation(activation_string):
if activation_string in ACT2FN:
return ACT2FN[activation_string]
else:
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
# For backwards compatibility with: from activations import gelu_python
gelu_python = get_activation("gelu_python")
gelu_new = get_activation("gelu_new")
gelu = get_activation("gelu")
gelu_fast = get_activation("gelu_fast")
quick_gelu = get_activation("quick_gelu")
silu = get_activation("silu")
mish = get_activation("mish")
linear_act = get_activation("linear")