-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
56 lines (46 loc) · 1.94 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pandas as pd
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestRegressor
#read data
data = pd.read_csv('./csv/melb_data.csv')
# Separate target from predictors
y = data.Price
X = data.drop(["Price"] , axis = 1)
# Divide data into training and validation subsets
X_train_full , X_val_full , y_train , y_val = train_test_split(X , y , train_size= 0.8 , test_size=0.2 , random_state = 0)
# Select num & cat cols
num_cols = [col for col in X_train_full.columns
if X_train_full[col].dtype in ['float64' , 'int64']]
cat_cols = [col for col in X_train_full.columns
if X_train_full[col].dtype == "object" and X[col].nunique() < 10]
#Keeping the num & col only
my_cols = num_cols + cat_cols
X_train = X_train_full[my_cols].copy()
X_val = X_val_full[my_cols].copy()
#PIPELINE
#Step 1: Define Preprocessing Steps
#We impute the num and we impute & one-hot-encode the cat
num_imputer = SimpleImputer(strategy = "constant")
cat_imputer = Pipeline(steps=
[
('imputer', SimpleImputer(strategy = 'most_frequent')),
("onehot" , OneHotEncoder(handle_unknown='ignore'))
])
preprocessor = ColumnTransformer(transformers=
[
("num" , num_imputer , num_cols)
("cat" , cat_imputer , cat_cols)
])
#Step 2: Define the Model
model = RandomForestRegressor(random_state=0)
#Step 3: Create and Evaluate the Pipeline
my_pipeline = Pipeline(steps=
[
("preprosse" , preprocessor )
("model" , model)
])
my_pipeline.fit(X_train , y_train)