-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathextract_features.py
228 lines (194 loc) · 8.37 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Requires vqa-maskrcnn-benchmark to be built and installed. See Readme
# for more details.
import argparse
import glob
import os
import cv2
import numpy as np
import torch
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.layers import nms
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.utils.model_serialization import load_state_dict
from PIL import Image
class FeatureExtractor:
MAX_SIZE = 1333
MIN_SIZE = 800
def __init__(self):
self.args = self.get_parser().parse_args()
self.detection_model = self._build_detection_model()
os.makedirs(self.args.output_folder, exist_ok=True)
def get_parser(self):
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_file", default=None, type=str, help="Detectron model file"
)
parser.add_argument(
"--config_file", default=None, type=str, help="Detectron config file"
)
parser.add_argument("--batch_size", type=int, default=2, help="Batch size")
parser.add_argument(
"--num_features",
type=int,
default=100,
help="Number of features to extract.",
)
parser.add_argument(
"--output_folder", type=str, default="./output", help="Output folder"
)
parser.add_argument("--image_dir", type=str, help="Image directory or file")
parser.add_argument(
"--feature_name",
type=str,
help="The name of the feature to extract",
default="fc6",
)
parser.add_argument(
"--confidence_threshold",
type=float,
default=0,
help="Threshold of detection confidence above which boxes will be selected",
)
parser.add_argument(
"--background",
action="store_true",
help="The model will output predictions for the background class when set",
)
parser.add_argument(
"--partition", type=int, default=0, help="Partition to download."
)
return parser
def _build_detection_model(self):
cfg.merge_from_file(self.args.config_file)
cfg.freeze()
model = build_detection_model(cfg)
checkpoint = torch.load(self.args.model_file, map_location=torch.device("cpu"))
load_state_dict(model, checkpoint.pop("model"))
model.to("cuda")
model.eval()
return model
def _image_transform(self, path):
img = Image.open(path)
im = np.array(img).astype(np.float32)
# IndexError: too many indices for array, grayscale images
if len(im.shape) < 3:
im = np.repeat(im[:, :, np.newaxis], 3, axis=2)
im = im[:, :, ::-1]
im -= np.array([102.9801, 115.9465, 122.7717])
im_shape = im.shape
im_height = im_shape[0]
im_width = im_shape[1]
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
# Scale based on minimum size
im_scale = self.MIN_SIZE / im_size_min
# Prevent the biggest axis from being more than max_size
# If bigger, scale it down
if np.round(im_scale * im_size_max) > self.MAX_SIZE:
im_scale = self.MAX_SIZE / im_size_max
im = cv2.resize(
im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR
)
img = torch.from_numpy(im).permute(2, 0, 1)
im_info = {"width": im_width, "height": im_height}
return img, im_scale, im_info
def _process_feature_extraction(
self, output, im_scales, im_infos, feature_name="fc6", conf_thresh=0
):
batch_size = len(output[0]["proposals"])
n_boxes_per_image = [len(boxes) for boxes in output[0]["proposals"]]
score_list = output[0]["scores"].split(n_boxes_per_image)
score_list = [torch.nn.functional.softmax(x, -1) for x in score_list]
feats = output[0][feature_name].split(n_boxes_per_image)
cur_device = score_list[0].device
feat_list = []
info_list = []
for i in range(batch_size):
dets = output[0]["proposals"][i].bbox / im_scales[i]
scores = score_list[i]
max_conf = torch.zeros((scores.shape[0])).to(cur_device)
conf_thresh_tensor = torch.full_like(max_conf, conf_thresh)
start_index = 1
# Column 0 of the scores matrix is for the background class
if self.args.background:
start_index = 0
for cls_ind in range(start_index, scores.shape[1]):
cls_scores = scores[:, cls_ind]
keep = nms(dets, cls_scores, 0.5)
max_conf[keep] = torch.where(
# Better than max one till now and minimally greater than conf_thresh
(cls_scores[keep] > max_conf[keep])
& (cls_scores[keep] > conf_thresh_tensor[keep]),
cls_scores[keep],
max_conf[keep],
)
sorted_scores, sorted_indices = torch.sort(max_conf, descending=True)
num_boxes = (sorted_scores[: self.args.num_features] != 0).sum()
keep_boxes = sorted_indices[: self.args.num_features]
feat_list.append(feats[i][keep_boxes])
bbox = output[0]["proposals"][i][keep_boxes].bbox / im_scales[i]
# Predict the class label using the scores
objects = torch.argmax(scores[keep_boxes][start_index:], dim=1)
cls_prob = torch.max(scores[keep_boxes][start_index:], dim=1)
info_list.append(
{
"bbox": bbox.cpu().numpy(),
"num_boxes": num_boxes.item(),
"objects": objects.cpu().numpy(),
"image_width": im_infos[i]["width"],
"image_height": im_infos[i]["height"],
"cls_prob": scores[keep_boxes].cpu().numpy(),
}
)
return feat_list, info_list
def get_detectron_features(self, image_paths):
img_tensor, im_scales, im_infos = [], [], []
for image_path in image_paths:
im, im_scale, im_info = self._image_transform(image_path)
img_tensor.append(im)
im_scales.append(im_scale)
im_infos.append(im_info)
# Image dimensions should be divisible by 32, to allow convolutions
# in detector to work
current_img_list = to_image_list(img_tensor, size_divisible=32)
current_img_list = current_img_list.to("cuda")
with torch.no_grad():
output = self.detection_model(current_img_list)
feat_list = self._process_feature_extraction(
output,
im_scales,
im_infos,
self.args.feature_name,
self.args.confidence_threshold,
)
return feat_list
def _chunks(self, array, chunk_size):
for i in range(0, len(array), chunk_size):
yield array[i : i + chunk_size]
def _save_feature(self, file_name, feature, info):
file_base_name = os.path.basename(file_name)
file_base_name = file_base_name.split(".")[0]
info["image_id"] = file_base_name
info["features"] = feature.cpu().numpy()
file_base_name = file_base_name + ".npy"
np.save(os.path.join(self.args.output_folder, file_base_name), info)
def extract_features(self):
image_dir = self.args.image_dir
if os.path.isfile(image_dir):
features, infos = self.get_detectron_features([image_dir])
self._save_feature(image_dir, features[0], infos[0])
else:
files = glob.glob(os.path.join(image_dir, "*"))
# files = sorted(files)
# files = [files[i: i+1000] for i in range(0, len(files), 1000)][self.args.partition]
for chunk in self._chunks(files, self.args.batch_size):
try:
features, infos = self.get_detectron_features(chunk)
for idx, file_name in enumerate(chunk):
self._save_feature(file_name, features[idx], infos[idx])
except BaseException:
continue
if __name__ == "__main__":
feature_extractor = FeatureExtractor()
feature_extractor.extract_features()