-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcartoon.py
122 lines (97 loc) · 3.51 KB
/
cartoon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import cv2
import numpy as np
import matplotlib.pyplot as plt
def cartoonize_image(
input_image_path,
output_image_path,
num_down=2,
num_bilateral=7,
brightness_factor=1.2,
):
# Step 1: Load the image
img = cv2.imread(input_image_path)
# Step 2: Resize the image
img_color = img
for _ in range(num_down):
img_color = cv2.pyrDown(img_color)
# Step 3: Apply bilateral filter multiple times for a stronger cartoon effect
for _ in range(num_bilateral):
img_color = cv2.bilateralFilter(
img_color, d=9, sigmaColor=75, sigmaSpace=75
) # Adjust these values
# Step 4: Upscale the image back to its original size
for _ in range(num_down):
img_color = cv2.pyrUp(img_color)
# Step 5: Convert the image to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Step 6: Reduce blurriness by applying a smaller median blur
img_blur = cv2.medianBlur(img_gray, 3) # Adjust the kernel size (e.g., 3)
# Step 7: Create an edge mask using adaptive thresholding
img_edge = cv2.adaptiveThreshold(
img_blur,
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
blockSize=9, # Adjust this
C=2,
) # Adjust this
# Step 8: Combine the color and edge mask to get the cartoon effect
img_cartoon = cv2.bitwise_and(img_color, img_color, mask=img_edge)
# Step 9: Increase the brightness of the cartoonized image
img_cartoon = cv2.convertScaleAbs(img_cartoon, alpha=brightness_factor, beta=0)
# Step 10: Save the cartoonized image
cv2.imwrite(output_image_path, img_cartoon)
print("Cartoonized image saved as", output_image_path)
# Display two grids: one for all steps and another for initial and final images
original_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
cartoonized_img = cv2.cvtColor(img_cartoon, cv2.COLOR_BGR2RGB)
# Grid 1: All steps
plt.figure(figsize=(20, 10))
plt.subplot(2, 3, 1)
plt.imshow(original_img)
plt.title("Original Image")
plt.axis("off")
plt.subplot(2, 3, 2)
plt.imshow(img_color)
plt.title("Simplified Color")
plt.axis("off")
plt.subplot(2, 3, 3)
plt.imshow(img_gray, cmap="gray")
plt.title("Grayscale Image")
plt.axis("off")
plt.subplot(2, 3, 4)
plt.imshow(img_edge, cmap="gray")
plt.title("Edge Mask")
plt.axis("off")
plt.subplot(2, 3, 5)
plt.imshow(cartoonized_img)
plt.title("Cartoonized Image")
plt.axis("off")
# Grid 2: Initial and final
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(original_img)
plt.title("Original Image")
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(cartoonized_img)
plt.title("Cartoonized Image")
plt.axis("off")
# Save both grid images
all_steps_output_path = (
"all_steps_grid.jpg" # Define the path for the all steps grid
)
initial_final_output_path = (
"initial_final_grid.jpg" # Define the path for the initial and final grid
)
plt.figure(1)
plt.savefig(all_steps_output_path, bbox_inches="tight")
plt.figure(2)
plt.savefig(initial_final_output_path, bbox_inches="tight")
plt.show()
if __name__ == "__main__":
input_image_path = "input.jpg" # Replace with the path to your input image
output_image_path = "cartoonized_output.jpg" # Replace with the desired output path
cartoonize_image(
input_image_path, output_image_path, brightness_factor=1.25
) # Adjust brightness_factor as needed