-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtemporal_swav.py
312 lines (257 loc) · 12.2 KB
/
temporal_swav.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import argparse
import os
import random
import shutil
import time
import warnings
from datetime import datetime
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from utils import GaussianBlur
import numpy as np
import wandb
parser = argparse.ArgumentParser(description='Temporal classification with headcam data')
parser.add_argument('--data', help='path to dataset')
parser.add_argument('--val-data', help='path to validation dataset')
parser.add_argument('--model', default='resnet50', choices=['resnet50', 'resnext101_32x8d', 'resnext50_32x4d',
'mobilenet_v2', 'convnext_tiny', 'convnext_large'], help='model')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N', help='number of data loading workers (default'
':16)')
parser.add_argument('--epochs', default=50, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int, metavar='N',
help='mini-batch size (default: 64), this is the total batch size of all GPUs on the current node '
'when using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.0001, type=float, metavar='LR', help='initial learning rate',
dest='lr')
parser.add_argument('--wd', '--weight-decay', default=0.0, type=float, metavar='W', help='weight decay (default: 0)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=1000, type=int, metavar='N', help='print frequency (default: 1000)')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed '
'training')
parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend')
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use tePyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--n_out', default=1000, type=int, help='output dim')
parser.add_argument('--augmentation', default=True, action='store_false', help='whether to use data augmentation?')
parser.add_argument('--partition', default='SAY', type=str, help='which partition to process. Choices: [S, A, Y, SAY]')
SEG_LEN = 288
FPS = 5
class SWAV(nn.Module):
def __init__(self, model, n_out):
super(SWAV, self).__init__()
self.n_out = n_out
#model = models.convnext_tiny(weights = models.ConvNeXt_Tiny_Weights.IMAGENET1K_V1)
#model = torch.nn.DataParallel(model)
self.model = model
self.model.module.classifier[-1] = torch.nn.Identity()
self.prototypes = nn.Linear(768, n_out, bias = False)
def distributed_sinkhorn(self, out):
Q = torch.exp(out / 0.05).t() # Q is K-by-B for consistency with notations from our paper
B = Q.shape[1] # number of samples to assign
K = Q.shape[0] # how many prototypes
# make the matrix sums to 1
sum_Q = torch.sum(Q)
#dist.all_reduce(sum_Q)
Q /= sum_Q
for it in range(3):
# normalize each row: total weight per prototype must be 1/K
sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
#dist.all_reduce(sum_of_rows)
Q /= sum_of_rows
Q /= K
# normalize each column: total weight per sample must be 1/B
Q /= torch.sum(Q, dim=0, keepdim=True)
Q /= B
Q *= B # the colomns must sum to 1 so that Q is an assignment
return Q.t()
def forward(self, x):
return self.prototypes(self.model(x))
def main():
args = parser.parse_args()
print(args)
wandb.init(project="baby-vision", entity="peiqiliu")
wandb.config = args
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
print('Model:', args.model)
if args.model == 'convnext_tiny':
model = models.convnext_tiny(weights = models.ConvNeXt_Tiny_Weights.IMAGENET1K_V1)
if args.model == 'convnext_large':
model = models.convnext_large(weights = models.ConvNeXt_Large_Weights.IMAGENET1K_V1)
else:
model = models.__dict__[args.model](pretrained=False)
#if args.model.startswith('res'):
# model.fc = torch.nn.Linear(in_features=2048, out_features=args.n_out, bias=True)
#elif args.model.startswith('convnext'):
#model.classifier = torch.nn.Linear(in_features = 768, out_features = args.n_out, bias = True)
#else:
#elif not args.model.startswith('convnext'):
# model.classifier = torch.nn.Linear(in_features=1280, out_features=args.n_out, bias=True)
#else:
# model.classifier.append(torch.nn.Linear(1000, args.n_out))
# DataParallel will divide and allocate batch_size to all available GPUs
model = torch.nn.DataParallel(model)
model = SWAV(model, args.n_out).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=args.weight_decay)
cudnn.benchmark = True
if args.resume:
if os.path.isfile(args.resume):
print(args.resume)
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
else:
print("=> no checkpoint found at '{}'".format(args.resume))
date_time = datetime.now().strftime("%m%d%Y_%H%M%S")
exp_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'experiments')
savefile_dir = f'{args.model}_{args.batch_size}_{args.augmentation}_{args.partition}_{FPS}_{SEG_LEN}_{date_time}'
exp_path = os.path.join(exp_path, savefile_dir)
Path(exp_path).mkdir(parents=True, exist_ok=True)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
if args.augmentation:
train_dataset = datasets.ImageFolder(
args.data,
transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
transforms.RandomApply([transforms.ColorJitter(0.9, 0.9, 0.9, 0.5)], p=0.9),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
)
else:
train_dataset = datasets.ImageFolder(
args.data,
transforms.Compose([
transforms.ToTensor(),
normalize
])
)
val_dataset = datasets.ImageFolder(
args.val_data,
transforms.Compose([
transforms.ToTensor(),
normalize
])
)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, sampler=None
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size,
num_workers=args.workers, pin_memory=True, sampler=None
)
step = 0
for epoch in range(args.start_epoch, args.epochs):
val(val_loader, model, criterion, step, args)
# train for one epoch
step = train(train_loader, model, criterion, optimizer, epoch, args)
torch.save({'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()},
os.path.join(exp_path, f'epoch_{epoch}.tar'))
def train(train_loader, model, criterion, optimizer, epoch, args):
# switch to train mode
model.train()
num_steps = len(train_loader)
for i, (images, target) in enumerate(train_loader):
step = epoch * num_steps + i
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses = loss.item()
top1 = acc1[0]
top5 = acc5[0]
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % args.print_freq == 0:
wandb.log({'train_loss': losses}, step=step)
wandb.log({'train_top1': top1}, step=step)
wandb.log({'train_top5': top5}, step=step)
print(epoch)
print(losses)
return step
def val(val_loader, model, criterion, step, args):
# switch to eval mode
model.eval()
losses = []
top1 = []
top5 = []
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.append(loss.item())
top1.append(acc1[0].cpu())
top5.append(acc5[0].cpu())
wandb.log({'val_loss': np.mean(losses)}, step=step)
wandb.log({'val_top1': np.mean(top1)}, step=step)
wandb.log({'val_top5': np.mean(top5)}, step=step)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def average(lst):
return sum(lst) / len(lst)
if __name__ == '__main__':
main()