-
Notifications
You must be signed in to change notification settings - Fork 367
/
Copy pathtrain_val_seg.py
311 lines (271 loc) · 16.2 KB
/
train_val_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#!/usr/bin/python3
"""Training and Validation On Segmentation Task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import random
import shutil
import argparse
import importlib
import data_utils
import numpy as np
import pointfly as pf
import tensorflow as tf
from datetime import datetime
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--filelist', '-t', help='Path to training set ground truth (.txt)', required=True)
parser.add_argument('--filelist_val', '-v', help='Path to validation set ground truth (.txt)', required=True)
parser.add_argument('--load_ckpt', '-l', help='Path to a check point file for load')
parser.add_argument('--save_folder', '-s', help='Path to folder for saving check points and summary', required=True)
parser.add_argument('--model', '-m', help='Model to use', required=True)
parser.add_argument('--setting', '-x', help='Setting to use', required=True)
parser.add_argument('--epochs', help='Number of training epochs (default defined in setting)', type=int)
parser.add_argument('--batch_size', help='Batch size (default defined in setting)', type=int)
parser.add_argument('--log', help='Log to FILE in save folder; use - for stdout (default is log.txt)', metavar='FILE', default='log.txt')
parser.add_argument('--no_timestamp_folder', help='Dont save to timestamp folder', action='store_true')
parser.add_argument('--no_code_backup', help='Dont backup code', action='store_true')
args = parser.parse_args()
if not args.no_timestamp_folder:
time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
root_folder = os.path.join(args.save_folder, '%s_%s_%s_%d' % (args.model, args.setting, time_string, os.getpid()))
else:
root_folder = args.save_folder
if not os.path.exists(root_folder):
os.makedirs(root_folder)
if args.log != '-':
sys.stdout = open(os.path.join(root_folder, args.log), 'w')
print('PID:', os.getpid())
print(args)
model = importlib.import_module(args.model)
setting_path = os.path.join(os.path.dirname(__file__), args.model)
sys.path.append(setting_path)
setting = importlib.import_module(args.setting)
num_epochs = args.epochs or setting.num_epochs
batch_size = args.batch_size or setting.batch_size
sample_num = setting.sample_num
step_val = setting.step_val
label_weights_list = setting.label_weights
rotation_range = setting.rotation_range
rotation_range_val = setting.rotation_range_val
scaling_range = setting.scaling_range
scaling_range_val = setting.scaling_range_val
jitter = setting.jitter
jitter_val = setting.jitter_val
# Prepare inputs
print('{}-Preparing datasets...'.format(datetime.now()))
is_list_of_h5_list = not data_utils.is_h5_list(args.filelist)
if is_list_of_h5_list:
seg_list = data_utils.load_seg_list(args.filelist)
seg_list_idx = 0
filelist_train = seg_list[seg_list_idx]
seg_list_idx = seg_list_idx + 1
else:
filelist_train = args.filelist
data_train, _, data_num_train, label_train, _ = data_utils.load_seg(filelist_train)
data_val, _, data_num_val, label_val, _ = data_utils.load_seg(args.filelist_val)
# shuffle
data_train, data_num_train, label_train = \
data_utils.grouped_shuffle([data_train, data_num_train, label_train])
num_train = data_train.shape[0]
point_num = data_train.shape[1]
num_val = data_val.shape[0]
print('{}-{:d}/{:d} training/validation samples.'.format(datetime.now(), num_train, num_val))
batch_num = (num_train * num_epochs + batch_size - 1) // batch_size
print('{}-{:d} training batches.'.format(datetime.now(), batch_num))
batch_num_val = math.ceil(num_val / batch_size)
print('{}-{:d} testing batches per test.'.format(datetime.now(), batch_num_val))
######################################################################
# Placeholders
indices = tf.placeholder(tf.int32, shape=(None, None, 2), name="indices")
xforms = tf.placeholder(tf.float32, shape=(None, 3, 3), name="xforms")
rotations = tf.placeholder(tf.float32, shape=(None, 3, 3), name="rotations")
jitter_range = tf.placeholder(tf.float32, shape=(1), name="jitter_range")
global_step = tf.Variable(0, trainable=False, name='global_step')
is_training = tf.placeholder(tf.bool, name='is_training')
pts_fts = tf.placeholder(tf.float32, shape=(None, point_num, setting.data_dim), name='pts_fts')
labels_seg = tf.placeholder(tf.int64, shape=(None, point_num), name='labels_seg')
labels_weights = tf.placeholder(tf.float32, shape=(None, point_num), name='labels_weights')
######################################################################
pts_fts_sampled = tf.gather_nd(pts_fts, indices=indices, name='pts_fts_sampled')
features_augmented = None
if setting.data_dim > 3:
points_sampled, features_sampled = tf.split(pts_fts_sampled,
[3, setting.data_dim - 3],
axis=-1,
name='split_points_features')
if setting.use_extra_features:
if setting.with_normal_feature:
if setting.data_dim < 6:
print('Only 3D normals are supported!')
exit()
elif setting.data_dim == 6:
features_augmented = pf.augment(features_sampled, rotations)
else:
normals, rest = tf.split(features_sampled, [3, setting.data_dim - 6])
normals_augmented = pf.augment(normals, rotations)
features_augmented = tf.concat([normals_augmented, rest], axis=-1)
else:
features_augmented = features_sampled
else:
points_sampled = pts_fts_sampled
points_augmented = pf.augment(points_sampled, xforms, jitter_range)
labels_sampled = tf.gather_nd(labels_seg, indices=indices, name='labels_sampled')
labels_weights_sampled = tf.gather_nd(labels_weights, indices=indices, name='labels_weight_sampled')
net = model.Net(points_augmented, features_augmented, is_training, setting)
logits = net.logits
probs = tf.nn.softmax(logits, name='probs')
predictions = tf.argmax(probs, axis=-1, name='predictions')
loss_op = tf.losses.sparse_softmax_cross_entropy(labels=labels_sampled, logits=logits,
weights=labels_weights_sampled)
with tf.name_scope('metrics'):
loss_mean_op, loss_mean_update_op = tf.metrics.mean(loss_op)
t_1_acc_op, t_1_acc_update_op = tf.metrics.accuracy(labels_sampled, predictions, weights=labels_weights_sampled)
t_1_per_class_acc_op, t_1_per_class_acc_update_op = \
tf.metrics.mean_per_class_accuracy(labels_sampled, predictions, setting.num_class,
weights=labels_weights_sampled)
reset_metrics_op = tf.variables_initializer([var for var in tf.local_variables()
if var.name.split('/')[0] == 'metrics'])
_ = tf.summary.scalar('loss/train', tensor=loss_mean_op, collections=['train'])
_ = tf.summary.scalar('t_1_acc/train', tensor=t_1_acc_op, collections=['train'])
_ = tf.summary.scalar('t_1_per_class_acc/train', tensor=t_1_per_class_acc_op, collections=['train'])
_ = tf.summary.scalar('loss/val', tensor=loss_mean_op, collections=['val'])
_ = tf.summary.scalar('t_1_acc/val', tensor=t_1_acc_op, collections=['val'])
_ = tf.summary.scalar('t_1_per_class_acc/val', tensor=t_1_per_class_acc_op, collections=['val'])
lr_exp_op = tf.train.exponential_decay(setting.learning_rate_base, global_step, setting.decay_steps,
setting.decay_rate, staircase=True)
lr_clip_op = tf.maximum(lr_exp_op, setting.learning_rate_min)
_ = tf.summary.scalar('learning_rate', tensor=lr_clip_op, collections=['train'])
reg_loss = setting.weight_decay * tf.losses.get_regularization_loss()
if setting.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate=lr_clip_op, epsilon=setting.epsilon)
elif setting.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate=lr_clip_op, momentum=setting.momentum, use_nesterov=True)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss_op + reg_loss, global_step=global_step)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver(max_to_keep=None)
# backup all code
if not args.no_code_backup:
code_folder = os.path.abspath(os.path.dirname(__file__))
shutil.copytree(code_folder, os.path.join(root_folder, os.path.basename(code_folder)))
folder_ckpt = os.path.join(root_folder, 'ckpts')
if not os.path.exists(folder_ckpt):
os.makedirs(folder_ckpt)
folder_summary = os.path.join(root_folder, 'summary')
if not os.path.exists(folder_summary):
os.makedirs(folder_summary)
parameter_num = np.sum([np.prod(v.shape.as_list()) for v in tf.trainable_variables()])
print('{}-Parameter number: {:d}.'.format(datetime.now(), parameter_num))
with tf.Session() as sess:
summaries_op = tf.summary.merge_all('train')
summaries_val_op = tf.summary.merge_all('val')
summary_writer = tf.summary.FileWriter(folder_summary, sess.graph)
sess.run(init_op)
# Load the model
if args.load_ckpt is not None:
saver.restore(sess, args.load_ckpt)
print('{}-Checkpoint loaded from {}!'.format(datetime.now(), args.load_ckpt))
else:
latest_ckpt = tf.train.latest_checkpoint(folder_ckpt)
if latest_ckpt:
print('{}-Found checkpoint {}'.format(datetime.now(), latest_ckpt))
saver.restore(sess, latest_ckpt)
print('{}-Checkpoint loaded from {} (Iter {})'.format(
datetime.now(), latest_ckpt, sess.run(global_step)))
for batch_idx_train in range(batch_num):
######################################################################
# Validation
if (batch_idx_train % step_val == 0 and (batch_idx_train != 0 or args.load_ckpt is not None)) \
or batch_idx_train == batch_num - 1:
filename_ckpt = os.path.join(folder_ckpt, 'iter')
saver.save(sess, filename_ckpt, global_step=global_step)
print('{}-Checkpoint saved to {}!'.format(datetime.now(), filename_ckpt))
sess.run(reset_metrics_op)
for batch_val_idx in range(batch_num_val):
start_idx = batch_size * batch_val_idx
end_idx = min(start_idx + batch_size, num_val)
batch_size_val = end_idx - start_idx
points_batch = data_val[start_idx:end_idx, ...]
points_num_batch = data_num_val[start_idx:end_idx, ...]
labels_batch = label_val[start_idx:end_idx, ...]
weights_batch = np.array(label_weights_list)[labels_batch]
xforms_np, rotations_np = pf.get_xforms(batch_size_val,
rotation_range=rotation_range_val,
scaling_range=scaling_range_val,
order=setting.rotation_order)
sess.run([loss_mean_update_op, t_1_acc_update_op, t_1_per_class_acc_update_op],
feed_dict={
pts_fts: points_batch,
indices: pf.get_indices(batch_size_val, sample_num, points_num_batch),
xforms: xforms_np,
rotations: rotations_np,
jitter_range: np.array([jitter_val]),
labels_seg: labels_batch,
labels_weights: weights_batch,
is_training: False,
})
loss_val, t_1_acc_val, t_1_per_class_acc_val, summaries_val, step = sess.run(
[loss_mean_op, t_1_acc_op, t_1_per_class_acc_op, summaries_val_op, global_step])
summary_writer.add_summary(summaries_val, step)
print('{}-[Val ]-Average: Loss: {:.4f} T-1 Acc: {:.4f} T-1 mAcc: {:.4f}'
.format(datetime.now(), loss_val, t_1_acc_val, t_1_per_class_acc_val))
sys.stdout.flush()
######################################################################
######################################################################
# Training
start_idx = (batch_size * batch_idx_train) % num_train
end_idx = min(start_idx + batch_size, num_train)
batch_size_train = end_idx - start_idx
points_batch = data_train[start_idx:end_idx, ...]
points_num_batch = data_num_train[start_idx:end_idx, ...]
labels_batch = label_train[start_idx:end_idx, ...]
weights_batch = np.array(label_weights_list)[labels_batch]
if start_idx + batch_size_train == num_train:
if is_list_of_h5_list:
filelist_train_prev = seg_list[(seg_list_idx - 1) % len(seg_list)]
filelist_train = seg_list[seg_list_idx % len(seg_list)]
if filelist_train != filelist_train_prev:
data_train, _, data_num_train, label_train, _ = data_utils.load_seg(filelist_train)
num_train = data_train.shape[0]
seg_list_idx = seg_list_idx + 1
data_train, data_num_train, label_train = \
data_utils.grouped_shuffle([data_train, data_num_train, label_train])
offset = int(random.gauss(0, sample_num * setting.sample_num_variance))
offset = max(offset, int(-sample_num * setting.sample_num_clip))
offset = min(offset, int(sample_num * setting.sample_num_clip))
sample_num_train = sample_num + offset
xforms_np, rotations_np = pf.get_xforms(batch_size_train,
rotation_range=rotation_range,
scaling_range=scaling_range,
order=setting.rotation_order)
sess.run(reset_metrics_op)
sess.run([train_op, loss_mean_update_op, t_1_acc_update_op, t_1_per_class_acc_update_op],
feed_dict={
pts_fts: points_batch,
indices: pf.get_indices(batch_size_train, sample_num_train, points_num_batch),
xforms: xforms_np,
rotations: rotations_np,
jitter_range: np.array([jitter]),
labels_seg: labels_batch,
labels_weights: weights_batch,
is_training: True,
})
if batch_idx_train % 10 == 0:
loss, t_1_acc, t_1_per_class_acc, summaries, step = sess.run([loss_mean_op,
t_1_acc_op,
t_1_per_class_acc_op,
summaries_op,
global_step])
summary_writer.add_summary(summaries, step)
print('{}-[Train]-Iter: {:06d} Loss: {:.4f} T-1 Acc: {:.4f} T-1 mAcc: {:.4f}'
.format(datetime.now(), step, loss, t_1_acc, t_1_per_class_acc))
sys.stdout.flush()
######################################################################
print('{}-Done!'.format(datetime.now()))
if __name__ == '__main__':
main()