-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNon_CBAM_trainer3.py
250 lines (186 loc) · 9.07 KB
/
Non_CBAM_trainer3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# train: ehance.epoch444. batch_size = 8 P=15 lr=1e-4 validate: ehance.epoch xxx, 418; iqa.epoch64, 60
from argparse import ArgumentParser
import os
import numpy as np
import random
from scipy import stats
import yaml
import torch
from torch.utils.data import DataLoader
from torch import nn
import torch.nn.functional as F
from torch.optim import Adam
from data.yl360IQAData import IQADataset
from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator
from ignite.metrics.metric import Metric
from tensorboardX import SummaryWriter
import datetime
from option import args
import utility
from model.DenseWTUnet import BSR
#from model import Model
from loss import Loss
import logging
import shutil
import time
import math
import os
import matplotlib.pyplot as plt
from importlib import import_module
from data.yl360IQAData import *
from model.Non_CBAM_ResCBAMIQA import Model
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path)
def psnr(img1, img2):
mse = np.mean( (img1 - img2) ** 2 )
if mse == 0:
return 100
PIXEL_MAX = 1.0
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
def metricIQA(y, y_pred):
gt = np.reshape(y, (-1,))
pr = np.reshape(y_pred, (-1,))
srocc = stats.spearmanr(gt, pr)[0]
krocc = stats.stats.kendalltau(gt, pr)[0]
plcc = stats.pearsonr(gt, pr)[0]
rmse = np.sqrt(((gt-pr) ** 2).mean())
mae = np.abs((gt-pr)).mean()
#outlier_ratio = (np.abs(sq - q) > 2 * sq_std).mean()
return srocc, krocc, plcc, rmse, mae
def metricOnBatch(output):
psnr_batch = []
y_pred, y = output
_y_pred = y_pred.detach().cpu().numpy().reshape((y_pred.size(0)*y_pred.size(1), y_pred.size(2), y_pred.size(3)))
_y = y.detach().cpu().numpy().reshape((y.size(0)*y.size(1), y.size(2), y.size(3)))
psnr_batch += [psnr(_y[i], _y_pred[i]) for i in range(y_pred.size(0) * y_pred.size(1))]
#print(_y[0], _y_pred[0])
# plt.imsave('/home/yl/logger_enhance/hr.jpg', _y[0])
# plt.imsave('/home/yl/logger_enhance/sr.jpg', _y_pred[0])
psnr_fin = np.mean(psnr_batch)
return psnr_fin
def get_data_loaders(config, train_batch_size, exp_id=0):
train_dataset = IQADataset(config, exp_id, 'train')
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=0)
val_dataset = IQADataset(config, exp_id, 'val')
val_loader = torch.utils.data.DataLoader(val_dataset)
if config['test_ratio']:
test_dataset = IQADataset(config, exp_id, 'test')
test_loader = torch.utils.data.DataLoader(test_dataset)
return train_loader, val_loader, test_loader
return train_loader, val_loader
def validate(mw_model, model, val_loader):
mw_model.eval()
model.eval()
scores, gt_scores = [], []
for num, val_batch in enumerate(val_loader):
im_mw, imp_iwt, gt_iwt, im_dmos = val_batch
print(im_mw.size())
#print(imp_dwt)
pre_iwt = mw_model(im_mw)
pre_iwt = [LocalNormalization(pre_iwt[i][0].detach().cpu().numpy()) for i in range(pre_iwt.size(0))]
pre_iwt = torch.stack(pre_iwt).cuda()
pre_score = model(imp_iwt, pre_iwt - imp_iwt)
scores.append(pre_score.squeeze(0).detach().cpu().numpy())
gt_scores.append(im_dmos.squeeze(0).cpu().numpy())
scores = np.array(scores)
gt_scores = np.array(gt_scores)
print(scores, gt_scores)
srocc, krocc, plcc, rmse, mae = metricIQA(scores, gt_scores)
return srocc, krocc, plcc, rmse, mae
def run(train_batch_size, epochs, lr, weight_decay, config, exp_id, log_dir,
disable_gpu=False):
#print(config)
if config['test_ratio'] is not None:
train_loader, val_loader, test_loader = get_data_loaders(config, train_batch_size, exp_id)
else:
train_loader, val_loader = get_data_loaders(config, train_batch_size, exp_id)
module = import_module('model.' + 'MWCNN')
mw_model = module.make_model(args).to('cuda')
model = Model(args).to('cuda')
writer = SummaryWriter(log_dir=log_dir)
if os.path.exists(os.path.join(args.log_dir_MW, "state.pkl.epoch444")):
mw_model.load_state_dict(torch.load(os.path.join(args.log_dir_MW, "state.pkl.epoch444")), strict=False) #
logger.info("Successfully loaded pretrained Epoch_MW_model.")
else:
mw_model.load_state_dict(torch.load(os.path.join(args.log_dir_MW, "state.pkl.epoch418")), strict=False) #
logger.info("Successfully loaded pretrained newly saved MW_model.")
if os.path.exists(os.path.join(args.log_dir_IQA3, "state.pkl")):
model.load_state_dict(torch.load(os.path.join(args.log_dir_IQA3, "state.pkl")), strict=False) #
logger.info("Successfully loaded pretrained IQA_model.")
optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
if os.path.exists(os.path.join(args.log_dir_IQA3, "optimizer_state.pkl")):
optimizer.load_state_dict(torch.load(os.path.join(args.log_dir_IQA3, "optimizer_state.pkl")))
logger.info("Successfully loaded optimizer IQA_parameters.")
loss_avg = Loss(args)
iter = 0
for epoch in range(epochs)[1:]:
epoch_loss = []
for batch_num, (im_mw, imp_iwt, gt_iwt, im_dmos) in enumerate(train_loader):
iter += 1
mw_model.eval()
model.train()
optimizer.zero_grad()
pre_iwt = mw_model(im_mw)
pre_iwt = [LocalNormalization(pre_iwt[i][0].detach().cpu().numpy()) for i in range(train_batch_size)]
pre_iwt = torch.stack(pre_iwt).cuda()
error_map = pre_iwt - imp_iwt
#print(imp_iwt, error_map)
pre_score = model(imp_iwt, error_map)
loss_batch = loss_avg(pre_score, im_dmos)
plt.imsave(os.path.join(args.log_dir_IQA3, 'hr.jpg'), gt_iwt.detach().cpu().numpy()[0][0])
plt.imsave(os.path.join(args.log_dir_IQA3, 'sr.jpg'), pre_iwt.detach().cpu().numpy()[0][0])
plt.imsave(os.path.join(args.log_dir_IQA3, 'lr.jpg'), imp_iwt.detach().cpu().numpy()[0][0])
loss_batch.backward()
optimizer.step()
torch.save(model.state_dict(), os.path.join(args.log_dir_IQA3, "state.pkl"))
torch.save(optimizer.state_dict(), os.path.join(args.log_dir_IQA3, "optimizer_state.pkl"))
logger.info("[EPOCH{}:ITER{}] <LOSS>={:.4}".format(epoch, iter, loss_batch.item()))
writer.add_scalar('Train/Iter/Loss', loss_batch.item(), iter)
epoch_loss.append(loss_batch.item())
epoch_loss_log = np.mean(epoch_loss)
writer.add_scalar('Train/Epoch/Loss', epoch_loss_log, epoch)
with torch.no_grad():
mw_model.eval()
model.eval()
srocc, krocc, plcc, rmse, mae = validate(mw_model, model, val_loader)
logger.info("Validation Results - Epoch: {} <PLCC>: {:.4f} <SROCC>: {:.4f} <KROCC>: {:.4f} <RMSE>: {:.6f} <MAE>: {:.6f}"
.format(epoch, plcc, srocc, krocc, rmse, mae))
writer.add_scalar("validation/SROCC", srocc, epoch)
writer.add_scalar("validation/KROCC", krocc, epoch)
writer.add_scalar("validation/PLCC", plcc, epoch)
writer.add_scalar("validation/RMSE", rmse, epoch)
writer.add_scalar("validation/MAE", mae, epoch)
if epoch % 1 == 0:
torch.save(model.state_dict(), os.path.join(args.log_dir_IQA3, "state.pkl.epoch{}".format(epoch)))
print('Successfully saved model of EPOCH{}'.format(epoch))
writer.close()
if __name__ == "__main__":
torch.set_num_threads(12)
torch.manual_seed(args.seed) #
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.seed)
random.seed(args.seed)
torch.utils.backcompat.broadcast_warning.enabled = True
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
ensure_dir(args.log_dir_IQA3)
log_dir = '{}/{}'.format(args.log_dir_IQA3, 'tf')
ensure_dir(log_dir)
shutil.copy2(__file__, os.path.join(args.log_dir_IQA3, "script.py")) # copy2:复制文件和状态到后一个文件 print(__file__) 打印所执行文件当前的位置路径
# shutil.copy2(BBBRNNModel.__file__, os.path.join(args.log_dir, "model.py"))
# arguments = copy.deepcopy(locals())
logger = logging.getLogger("train-IQA")
logger.setLevel(logging.DEBUG)
logger.handlers = []
ch = logging.StreamHandler()
logger.addHandler(ch)
fh = logging.FileHandler(os.path.join(args.log_dir_IQA3, "log_train.txt"))
logger.addHandler(fh)
run(args.batch_size_iqa, args.epochs, args.lr_iqa, args.weight_decay, config, args.exp_id,
log_dir, args.disable_gpu)