-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutils.py
52 lines (43 loc) · 1.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.distributed as dist
import os
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt
def resume_model(resume_path, model, optimizer, scheduler):
print(f"=> loading checkpoint '{resume_path}'")
checkpoint = torch.load(resume_path)
start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
best_epoch = checkpoint['best_epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print(f"=> loaded checkpoint successfully '{resume_path}' (epoch {start_epoch})")
return model, optimizer, scheduler, start_epoch, best_acc1, best_epoch
def save_model(save_path, model, optimizer, scheduler, best_acc1, epoch, is_best):
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'best_acc1': best_acc1,
'epoch': epoch}
os.makedirs(save_path, exist_ok=True)
checkpoint_name = f'checkpoint_bestTop1.pth' if is_best else f'checkpoint_{epoch}.pth'
save_path = os.path.join(save_path, checkpoint_name)
torch.save(save_state, save_path)
print(f'=> Saved checkpoint of epoch {epoch} to {save_path}')