-
Notifications
You must be signed in to change notification settings - Fork 0
/
AnalysisCustomer.py
788 lines (732 loc) · 24.9 KB
/
AnalysisCustomer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
#%% import các thư viện cần thiết
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.cluster import DBSCAN
from sklearn.cluster import KMeans
from sklearn.metrics import davies_bouldin_score
from sklearn.metrics import silhouette_score
from sklearn.model_selection import ParameterGrid
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sqlalchemy import create_engine
from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.cluster import AgglomerativeClustering
from yellowbrick.cluster import KElbowVisualizer
warnings.filterwarnings("ignore")
#%%
sv = 'MSI-XUANKY\\HTTT1'
db = 'K21411_GROUP4'
username = 'xuanky'
pwd = '1'
# tạo chuỗi kết nối
conn_str = f'mssql+pyodbc://{username}:{pwd}@{sv}/{db}?driver=SQL+Server'
engine = create_engine(conn_str)
querry = 'SELECT * FROM [GROUP4].[FactSales]'
df = pd.read_sql_query(querry, engine)
# conn = pyodbc.connect(conn_str)
# cursor = conn.cursor()
#%%
df.describe()
df.info()
#%%
unique_count = df['CustomerID'].nunique()
#%%
plt.boxplot(df['OrderQty'],labels=['Order Quantity'], showfliers=True)
plt.show()
#%%
quantities_outliers = df[df['OrderQty']>20].copy()
print(quantities_outliers)
#%%
count_less_than_20 = len(df[df['OrderQty'] < 20])
#%%
df['InvoiceDate'] = pd.to_datetime(df['OrderDate'], format='%m/%d/%Y %H:%M')
most_recentpurchaseDate = max(df['InvoiceDate'])
most_recentpurchaseDate = most_recentpurchaseDate + pd.DateOffset(days=1)
df['Distance'] = most_recentpurchaseDate - df['InvoiceDate']
#%%
df.info()
#%%
fig = plt.figure(4, figsize=(10,8))
plt.boxplot(df['Distance'])
plt.show()
#%%
specific_cus = df[df['CustomerID'] == 29825].copy()
#%%
Monetary = df.groupby('CustomerID').LineTotal.sum().reset_index(name='Monetary')
Frequency = df.groupby('CustomerID')['SalesOrderNumber'].nunique().reset_index(name='Frequency')
Recency = df.groupby('CustomerID')['Distance'].min().reset_index(name='Recency')
#%% plot frequency
fig = plt.figure(4, figsize=(10,8))
plt.boxplot(Frequency['Frequency'])
plt.show()
#%% plot recency
fig = plt.figure(4, figsize=(10,8))
plt.boxplot(Recency['Recency'])
plt.show()
#%% plot monetary
fig = plt.figure(4, figsize=(10,8))
plt.boxplot(Monetary['Monetary'])
plt.show()
#%%
Monetary.sum()
#%%
Monetary.describe()
#%%
RFM = Monetary.merge(Frequency, how='inner', on='CustomerID')
RFM = RFM.merge(Recency, how='inner', on='CustomerID')
#%%
RFM.isnull().sum()
scaler = StandardScaler() # lưu ý phải định nghĩa thằng StandardScaler ra thì mới dùng được
# #%% xử lí outlier monetary
# q1 = RFM['Monetary'].quantile(0.25)
# q3 = RFM['Monetary'].quantile(0.75)
#
# IQR = q3 - q1
# RFM = RFM[(RFM['Monetary'] >=q1 - 1.5*IQR) & (RFM['Monetary'] <= q3 + 1.5*IQR)]
#
# #%% xử lí outlier Frequency
# q1 = RFM['Frequency'].quantile(0.25)
# q3 = RFM['Frequency'].quantile(0.75)
#
# IQR = q3 - q1
# RFM = RFM[(RFM['Frequency'] >=q1 - 1.5*IQR) & (RFM['Frequency'] <= q3 + 1.5*IQR)]
#
# #%% xử lí outlier Recency
# q1 = RFM['Recency'].quantile(0.25)
# q3 = RFM['Recency'].quantile(0.75)
#
# IQR = q3 - q1
# RFM = RFM[(RFM['Recency'] >=q1 - 1.5*IQR) & (RFM['Recency'] <= q3 + 1.5*IQR)]
#%%
RFM.info()
#%% Tách ra khách hàng cá nhân và KH doanh nghiệp
RFM_in = RFM[RFM['CustomerID'] < 20778]
RFM_resell = RFM[RFM['CustomerID'] >= 20778]
#%%
fig = plt.figure(4, figsize=(10,8))
plt.boxplot(RFM_resell['Monetary'])
plt.show()
# #%%
# fig = plt.figure(4, figsize=(10,8))
# plt.boxplot(RFM['Frequency'])
# plt.show()
#
# #%%
# fig = plt.figure(4, figsize=(10,8))
# plt.boxplot(RFM['Recency'].dt.days)
# plt.show()
#%%
RFM_resell_cluster = RFM_resell[['Monetary', 'Recency', 'Frequency']]
RFM_resell_cluster['Recency'] = RFM_resell_cluster['Recency'].dt.days
RFM_resell_scaled = scaler.fit_transform(RFM_resell_cluster) # scale 3 giá trị
#%%
RFM_in_cluster = RFM_in[['Monetary', 'Recency', 'Frequency']]
RFM_in_cluster['Recency'] = RFM_in_cluster['Recency'].dt.days
RFM_in_scaled = scaler.fit_transform(RFM_in_cluster) # scale 3 giá trị
#%% tìm K bằng elbow cho in
X = RFM_in_scaled
# Phạm vi giá trị K bạn muốn kiểm tra
k_values = range(1, 11)
sse = []
for k in k_values:
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X)
sse.append(kmeans.inertia_)
# Vẽ đồ thị Elbow
plt.plot(k_values, sse, marker='o')
plt.xlabel('Số cụm (K)')
plt.ylabel('SSE (Sum of Squared Errors)')
plt.title('Elbow Method để chọn K tối ưu')
plt.show()
# => nhận thấy K = 5 là tối ưu
#%% tìm K bằng silhoutte cho in
k_values = range(2, 11)
silhouette_scores = []
for k in k_values:
kmeans = KMeans(n_clusters=k, random_state=42)
cluster_labels = kmeans.fit_predict(X)
silhouette_avg = silhouette_score(X, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Vẽ đồ thị Silhouette Score
plt.plot(k_values, silhouette_scores, marker='o')
plt.xlabel('Số cụm (K)')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Score để chọn K tối ưu')
for i, sil_score in enumerate(silhouette_scores):
plt.text(i+2, sil_score, f'{sil_score:.4f}', ha='center', va='bottom')
plt.show()
#%% tìm K bằng elbow cho resell
X_resll = RFM_resell_scaled
# Phạm vi giá trị K bạn muốn kiểm tra
k_values = range(1, 11)
sse = []
for k in k_values:
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X_resll)
sse.append(kmeans.inertia_)
# Vẽ đồ thị Elbow
plt.plot(k_values, sse, marker='o')
plt.xlabel('Số cụm (K)')
plt.ylabel('SSE (Sum of Squared Errors)')
plt.title('Elbow Method để chọn K tối ưu')
plt.show()
# => nhận thấy K = 5 là tối ưu
#%% tìm K bằng silhoutte cho resell
k_values = range(2, 11)
silhouette_scores = []
for k in k_values:
kmeans = KMeans(n_clusters=k, random_state=42)
cluster_labels = kmeans.fit_predict(X_resll)
silhouette_avg = silhouette_score(X_resll, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Vẽ đồ thị Silhouette Score
plt.plot(k_values, silhouette_scores, marker='o')
plt.xlabel('Số cụm (K)')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Score để chọn K tối ưu')
for i, sil_score in enumerate(silhouette_scores):
plt.text(i+2, sil_score, f'{sil_score:.4f}', ha='center', va='bottom')
plt.show()
# ==> 2 nhóm doanh nghiệp là tối ưu
#%%
linked = linkage(RFM_in_scaled, method='ward') # Có thể thử các phương pháp khác như 'complete', 'single',
# 'average'
# Vẽ dendrogram để xác định số cụm phù hợp
plt.figure(figsize=(10, 7))
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.axhline(y=60, color='r', linestyle='--')
plt.show()
#%%
# from scipy.cluster.hierarchy import cut_tree
# num_clusters = 5 # Đặt số cụm dựa trên đồ thị dendrogram
#
# # Chia cụm sử dụng cut_tree
# clusters_in = cut_tree(linked, n_clusters=num_clusters)
# #%%
# RFM_in['Cluster'] = clusters_in.flatten()
# #%%
# cluster_counts_in = RFM_in['Cluster'].value_counts()
# #%%
# silhouette_avg = silhouette_score(RFM_in_scaled, clusters_in.flatten())
#%%
# fig, ax = plt.subplots(3, 2, figsize=(15, 12))
#
# for idx, k in enumerate([2, 3, 4, 5, 6, 7]):
# km = KMeans(n_clusters=k, init='k-means++', n_init=10, max_iter=100, random_state=42)
#
# # Calculate subplot indices
# q, mod = divmod(idx, 2)
#
# visualize = SilhouetteVisualizer(km, colors='yellowbrick', ax=ax[q, mod])
# visualize.fit(RFM_cluster_scaled)
#
# plt.show()
#%% chia cho IN
kmeans_in = KMeans(n_clusters=5, random_state=42)
kmeans_in.fit(RFM_in_scaled)
#%%
RFM_in['Cluster'] = kmeans_in.labels_
# print(RFM.head(10))
#%%
cluster_counts_in = RFM_in['Cluster'].value_counts()
#%%
inertia_score = kmeans_in.inertia_
print(inertia_score)
#%%
sns.boxplot(x=RFM_in['Cluster'], y=RFM_in['Monetary'])
plt.show()
#%%
kmeans_resell = KMeans(n_clusters= 4,random_state= 43 )
kmeans_resell.fit(RFM_resell_scaled)
#%%
RFM_resell['Cluster'] = kmeans_resell.labels_
cluster_counts_resell = RFM_resell['Cluster'].value_counts()
#%%
inertia_values = []
possible_k_values = range(1, 11) # Thử nghiệm từ 1 đến 10 cụm
for k in possible_k_values:
kmeans = KMeans(n_clusters=k, random_state=43)
kmeans.fit(RFM_resell_scaled)
inertia_values.append(kmeans.inertia_)
# Vẽ biểu đồ elbow method
plt.plot(possible_k_values, inertia_values, marker='o')
plt.title('Elbow Method for Optimal k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.show()
#%%
sns.boxplot(x=RFM_resell['Cluster'], y=RFM_resell['Monetary'])
plt.show()
#%%
RFM_in['Recency Rank'] = RFM_in['Recency'].rank(ascending=True)
RFM_in['Frequency Rank'] = RFM_in['Frequency'].rank(ascending=False)
RFM_in['Monetary Rank'] = RFM_in['Monetary'].rank(ascending=False)
#%%
MinMaxScale = MinMaxScaler()
RFM_in_scaled_min = MinMaxScale.fit_transform(RFM_in_cluster)
#%%
X_in_min = RFM_in_scaled_min
k_values = range(2, 11)
silhouette_scores = []
for k in k_values:
kmeans = KMeans(n_clusters=k, random_state=42)
cluster_labels = kmeans.fit_predict(X_in_min)
silhouette_avg = silhouette_score(X_in_min, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Vẽ đồ thị Silhouette Score
plt.plot(k_values, silhouette_scores, marker='o')
plt.xlabel('Số cụm (K)')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Score để chọn K tối ưu')
for i, sil_score in enumerate(silhouette_scores):
plt.text(i+2, sil_score, f'{sil_score:.4f}', ha='center', va='bottom')
plt.show()
#%%
kmeans_in_min = KMeans(n_clusters=2, random_state=44)
kmeans_in_min.fit(RFM_in_scaled_min)
RFM_in['Cluster'] = kmeans_in_min.labels_
cluster_counts_in = RFM_in['Cluster'].value_counts()
#%%
sns.boxplot(x=RFM_in['Cluster'], y=RFM_in['Frequency'])
plt.show()
#%%
RFM_resell_scaled_min = MinMaxScale.fit_transform(RFM_resell_cluster)
#%%
X_resell_min = RFM_resell_scaled_min
k_values = range(2, 11)
silhouette_scores = []
for k in k_values:
kmeans = KMeans(n_clusters=k, random_state=42)
cluster_labels = kmeans.fit_predict(X_resell_min)
silhouette_avg = silhouette_score(X_resell_min, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Vẽ đồ thị Silhouette Score
plt.plot(k_values, silhouette_scores, marker='o')
plt.xlabel('Số cụm (K)')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Score để chọn K tối ưu')
for i, sil_score in enumerate(silhouette_scores):
plt.text(i+2, sil_score, f'{sil_score:.4f}', ha='center', va='bottom')
plt.show()
#%%
kmeans_resell_min = KMeans(n_clusters=3, random_state=47)
kmeans_resell_min.fit(RFM_resell_scaled_min)
RFM_resell['Cluster'] = kmeans_resell_min.labels_
count_clusters_resell = RFM_resell['Cluster'].value_counts()
#%%
sns.boxplot(x=RFM_resell['Cluster'], y=RFM_resell['Recency'].dt.days)
plt.show()
#%%
RFM_in_subset = RFM_in.iloc[:, 0:5]
#%%
RFM_in_subset.to_csv('RFM_Individuals.csv', index=False)
RFM_resell.to_csv('RFM_Reseller.csv', index=False)
#%%
# RFM.describe()
# #%%
# eps_values = np.arange(0.1, 2.1, 0.1)
# min_samples_values = np.arange(200, 301, 5)
# param_grid = {'eps': eps_values,
# 'min_samples': min_samples_values}
#
# best_silhouette_score = -1
# best_params = None
#
# # Lặp qua tất cả các tham số trong lưới
# for params in ParameterGrid(param_grid):
# dbscan = DBSCAN(**params)
# labels = dbscan.fit_predict(RFM_cluster_scaled)
#
# # Đánh giá chất lượng phân cụm bằng silhouette score
# silhouette = silhouette_score(RFM_cluster_scaled, labels)
#
# # Kiểm tra và cập nhật giá trị tối ưu
# if silhouette > best_silhouette_score:
# best_silhouette_score = silhouette
# best_params = params
#
# print(f"Best Silhouette Score: {best_silhouette_score}")
# print(f"Best Parameters: {best_params}")
#
# #%% - bắt đầu cluster từ đây
# dbscan = DBSCAN(eps=0.687, min_samples=3900)
#
# # Áp dụng DBSCAN lên dữ liệu và lấy nhãn của từng điểm dữ liệu
# labels_dbscan = dbscan.fit_predict(RFM_cluster_scaled)
#
# # Kiểm tra số lượng nhóm
# n_clusters_dbscan = len(set(labels_dbscan)) - (1 if -1 in labels_dbscan else 0)
# print(f"Số lượng nhóm của DBSCAN: {n_clusters_dbscan}")
#
# # Đánh giá chất lượng phân cụm bằng silhouette score
# silhouette_dbscan = silhouette_score(RFM_cluster_scaled, labels_dbscan)
# print(f"Silhouette Score của DBSCAN: {silhouette_dbscan}")
#
# #%%
# labels_dbscan = dbscan.fit_predict(RFM_cluster_scaled)
#
# # Gán nhãn cho dữ liệu
# RFM_labeled_DB = RFM_cluster.copy()
# RFM_labeled_DB['ClusterLabel'] = labels_dbscan
#
# #%%
# cluster_counts_BD = RFM_labeled_DB['ClusterLabel'].value_counts()
#
# #%%
# sns.boxplot(x=RFM_labeled_DB['ClusterLabel'], y=RFM_labeled_DB['Monetary'])
# plt.show()
#
# #%%
# sns.boxplot(x=RFM_labeled_DB['ClusterLabel'], y=RFM_labeled_DB['Recency'])
# plt.show()
#
# #%%
# sns.boxplot(x=RFM_labeled_DB['ClusterLabel'], y=RFM_labeled_DB['Frequency'])
# plt.show()
# #%%
# RFM_DB_0 = RFM_labeled_DB[RFM_labeled_DB['ClusterLabel'] ==0] # lấy những thằng có label = 0 ra
# RFM_DB_0_cluster = RFM_DB_0.drop(['ClusterLabel'], axis=1) # drop cột
# RFM_DB_0_cluster_scaled = scaler.fit_transform(RFM_DB_0_cluster)
#
# #%% làm lại lần nữa với cluster 0
# dbscan = DBSCAN(eps=0.687, min_samples=1700)
#
# # Áp dụng DBSCAN lên dữ liệu và lấy nhãn của từng điểm dữ liệu
# labels_dbscan = dbscan.fit_predict(RFM_DB_0_cluster_scaled)
#
# # Kiểm tra số lượng nhóm
# n_clusters_dbscan = len(set(labels_dbscan)) - (1 if -1 in labels_dbscan else 0)
# print(f"Số lượng nhóm của DBSCAN: {n_clusters_dbscan}")
#
# # Đánh giá chất lượng phân cụm bằng silhouette score
# silhouette_dbscan = silhouette_score(RFM_DB_0_cluster, labels_dbscan)
# print(f"Silhouette Score của DBSCAN: {silhouette_dbscan}")
#
# #%%
# labels_dbscan = dbscan.fit_predict(RFM_DB_0_cluster_scaled)
#
# # Gán nhãn cho dữ liệu - và đếm lần 2
# RFM_DB_0_cluster['ClusterLabel'] = labels_dbscan
# RFM_DB_0_cluster['ClusterLabel'] = RFM_DB_0_cluster['ClusterLabel'].apply(lambda x: 3 if x ==0 else 2)
# cluster_counts_BD_0 = RFM_DB_0_cluster['ClusterLabel'].value_counts() # đếm lần 2
#
# #%% phân cụm lần 3
# RFM_DB_0_0_cluster = RFM_DB_0_cluster[RFM_DB_0_cluster['ClusterLabel']==3] # tách tiếp
# RFM_DB_0_0_scaled = scaler.fit_transform(RFM_DB_0_0_cluster.drop('ClusterLabel', axis=1))
#
# #%% chia nhỏ lần 3
# dbscan = DBSCAN(eps=0.9, min_samples=3000)
#
# # Áp dụng DBSCAN lên dữ liệu và lấy nhãn của từng điểm dữ liệu
# labels_dbscan = dbscan.fit_predict(RFM_DB_0_0_scaled)
#
# # Kiểm tra số lượng nhóm
# n_clusters_dbscan = len(set(labels_dbscan)) - (1 if -1 in labels_dbscan else 0)
# print(f"Số lượng nhóm của DBSCAN: {n_clusters_dbscan}")
#
# # Đánh giá chất lượng phân cụm bằng silhouette score
# silhouette_dbscan = silhouette_score(RFM_DB_0_0_scaled, labels_dbscan)
# print(f"Silhouette Score của DBSCAN: {silhouette_dbscan}")
#
# #%%
# labels_dbscan = dbscan.fit_predict(RFM_DB_0_0_scaled)
#
# # Gán nhãn cho dữ liệu
# RFM_DB_0_0_cluster['ClusterLabel'] = labels_dbscan
# RFM_DB_0_0_cluster['ClusterLabel'] = RFM_DB_0_0_cluster['ClusterLabel'].apply(lambda x:3 if x ==
# -1
# else 4)
# cluster_counts_BD_0_0 = RFM_DB_0_0_cluster['ClusterLabel'].value_counts()
#
#
#
# #%%
#
#
#
# #
# # #%%
# # silhouette_scores_hierarchical = []
# #
# # # Thử nghiệm từ K=2 đến K=20
# # for k in range(2, 10):
# # kmeans = KMeans(n_clusters=k, random_state=0)
# # labels_kmeans = kmeans.fit_predict(RFM_DB_0_0_scaled)
# # silhouette_avg = silhouette_score(RFM_DB_0_0_cluster, labels_kmeans)
# # silhouette_scores_hierarchical.append(silhouette_avg)
# #
# # # Vẽ biểu đồ đường
# # plt.figure(figsize=(10, 6))
# # plt.plot(range(2, 10), silhouette_scores_hierarchical, marker='o', linestyle='-', color='b')
# # plt.title('Silhouette Score for different values of K (Kmeans Clustering)')
# # plt.xlabel('Number of Clusters (K)')
# # plt.ylabel('Silhouette Score')
# # plt.grid(True)
# # plt.show()
# #
# # #%%
# # kmeans_0_0 = KMeans(n_clusters=6, random_state=0)
# # kmeans_0_0.fit_predict(RFM_DB_0_0_cluster)
# # RFM_DB_0_0_cluster['Cluster'] = kmeans_0_0
# # custer_counts_0_0 = RFM_DB_0_0_cluster['Cluster'].value_counts()
# #
# # #%%
# # RFM_scale_withID = RFM.copy()
# #
# # # Chuyển đổi cột Recency thành số ngày nếu cần
# # RFM_scale_withID['Recency'] = RFM_scale_withID['Recency'].dt.days
# #
# # # Lựa chọn các cột RFM cần scale
# # columns_to_scale = ['Monetary', 'Frequency', 'Recency']
# # data_to_scale = RFM_scale_withID[columns_to_scale]
# #
# # scaled_data = scaler.fit_transform(data_to_scale)
# #
# # RFM_scale_withID[columns_to_scale] = scaled_data
# # #%%
# # RFM_scale_withID['CustomerID'] = RFM_scale_withID['CustomerID'].astype(int)
# #
# # # Kiểm tra và giới hạn phạm vi giá trị của CustomerID
# # min_customer_id = RFM_scale_withID['CustomerID'].min()
# # max_customer_id = RFM_scale_withID['CustomerID'].max()
# #
# # #%%
# # min_customer_id = RFM_scale_withID['CustomerID'].min()
# # max_customer_id = RFM_scale_withID['CustomerID'].max()
# # valid_range = range(min_customer_id, max_customer_id+1)
# # RFM_filtered = RFM_scale_withID[RFM_scale_withID['CustomerID'].isin(valid_range)]
# # linked_filtered = linkage(RFM_filtered.drop('CustomerID', axis=1), 'ward')
# #
# # # Vẽ biểu đồ dendrogram
# # plt.figure(figsize=(12, 8))
# # dendrogram(linked_filtered,
# # orientation='top',
# # labels=RFM_filtered['CustomerID'],
# # distance_sort='descending',
# # show_leaf_counts=True)
# # plt.title('Hierarchical Clustering Dendrogram')
# # plt.xlabel('Samples')
# # plt.ylabel('Distance')
# # plt.show()
# #
# # #%%
# # from scipy.spatial.distance import pdist, squareform
# #
# # # Tính ma trận khoảng cách
# # distances = pdist(RFM_filtered.drop('CustomerID', axis=1), metric='euclidean')
# #
# # # Chuyển đổi ma trận khoảng cách thành ma trận vuông
# # distance_matrix = squareform(distances)
# #
# # # Vẽ biểu đồ dendrogram
# # plt.figure(figsize=(12, 8))
# # dendrogram(linkage(distance_matrix, method='ward'),
# # orientation='top',
# # labels=RFM_filtered['CustomerID'],
# # distance_sort='descending',
# # show_leaf_counts=True)
# # plt.title('Hierarchical Clustering Dendrogram')
# # plt.xlabel('Samples')
# # plt.ylabel('Distance')
# # plt.show()
# #
# # #%%
# # data_for_heatmap = RFM_filtered[['Recency', 'Frequency', 'Monetary']]
# #
# # # Tính ma trận tương quan
# # correlation_matrix = data_for_heatmap.corr()
# #
# # # Vẽ biểu đồ heatmap
# # plt.figure(figsize=(10, 8))
# # sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
# # plt.title('Heatmap - Tương quan giữa R, F, và M')
# # plt.show()
# #
# # #%%
# # RFM['CustomerID'].describe()
# # #%%
# # # RFM_copy.info()
# # #%%
# # RFM_copy = RFM.copy()
# # RFM_copy['Recency'] = RFM_copy['Recency'].dt.days
# # #%%
# # RFM_copy_cluster = RFM_copy[['Monetary','Frequency', 'Recency']]
# # linked = linkage(RFM_copy_cluster.reset_index(drop=True), method='ward')
# #
# # plt.figure(figsize=(12, 8))
# # dendrogram(linked,
# # orientation='top',
# # distance_sort='descending',
# # show_leaf_counts=True)
# # plt.title('Hierarchical Clustering Dendrogram')
# # plt.xlabel('Samples')
# # plt.ylabel('Distance')
# # plt.show()
# #
# # #%%
# # silhouette_scores_hierarchical = []
# #
# # # Thử nghiệm từ K=2 đến K=20
# # for k in range(2, 16):
# # hierarchical = AgglomerativeClustering(n_clusters=k, affinity='euclidean', linkage='ward')
# # labels_hierarchical = hierarchical.fit_predict(RFM_cluster_scaled)
# # silhouette_avg = silhouette_score(RFM_cluster_scaled, labels_hierarchical)
# # silhouette_scores_hierarchical.append(silhouette_avg)
# #
# # # Vẽ biểu đồ đường
# # plt.figure(figsize=(10, 6))
# # plt.plot(range(2, 16), silhouette_scores_hierarchical, marker='o', linestyle='-', color='b')
# # plt.title('Silhouette Score for different values of K (Hierarchical Clustering)')
# # plt.xlabel('Number of Clusters (K)')
# # plt.ylabel('Silhouette Score')
# # plt.grid(True)
# # plt.show()
# #
# # #%%
# # cluster = AgglomerativeClustering(n_clusters=2,affinity='euclidean', linkage='ward')
# # cluster.fit_predict(RFM_cluster_scaled)
# #
# # #%%
# # cl = cluster.fit_predict(RFM_cluster_scaled)
# # sc = silhouette_score(RFM_cluster_scaled,cl)
# # print(sc)
# #
# # #%%
# # RFM_labeled_HAC = RFM_cluster.copy()
# # RFM_labeled_HAC['ClusterLabel'] = cl
# #
# # #%%
# # cluster_counts_HAC = RFM_labeled_HAC['ClusterLabel'].value_counts()
# #
# # #%%
# # sns.boxplot(x=RFM_labeled_HAC['ClusterLabel'], y=RFM_labeled_HAC['Monetary'])
# # plt.show()
# #
# # #%%
# # sns.boxplot(x=RFM_labeled_HAC['ClusterLabel'],y=RFM_labeled_HAC['Recency'])
# # plt.show()
# # #%%
# # sns.boxplot(x=RFM_labeled_HAC['ClusterLabel'],y=RFM_labeled_HAC['Frequency'])
# # plt.show()
# #
# # #%%
# # RFM_labeled_HAC_0 = RFM_labeled_HAC[RFM_labeled_HAC['ClusterLabel'] == 0]
# # RFM_scale_0 = RFM_labeled_HAC_0.drop(['ClusterLabel'], axis=1)
# # RFM_scale_0 = scaler.fit_transform(RFM_scale_0)
# # #%%
# # silhouette_scores_hierarchical = []
# #
# # # Thử nghiệm từ K=2 đến K=20
# # for k in range(2, 5):
# # hierarchical = AgglomerativeClustering(n_clusters=k, affinity='euclidean', linkage='ward')
# # labels_hierarchical = hierarchical.fit_predict(RFM_scale_0)
# # silhouette_avg = silhouette_score(RFM_scale_0, labels_hierarchical)
# # silhouette_scores_hierarchical.append(silhouette_avg)
# #
# # # Vẽ biểu đồ đường
# # plt.figure(figsize=(10, 6))
# # plt.plot(range(2, 16), silhouette_scores_hierarchical, marker='o', linestyle='-', color='b')
# # plt.title('Silhouette Score for different values of K (Hierarchical Clustering)')
# # plt.xlabel('Number of Clusters (K)')
# # plt.ylabel('Silhouette Score')
# # plt.grid(True)
# # plt.show()
# #
# # #%%
# # cluster_0 = AgglomerativeClustering(n_clusters=7,affinity='euclidean', linkage='ward')
# # cluster_0.fit_predict(RFM_scale_0)
# # RFM_labeled_HAC_0['ClusterLabel'] = cluster_0.labels_
# #
# # #%%
# # cluster_0_labels_count = RFM_labeled_HAC_0['ClusterLabel'].value_counts()
# # #%%
# # kmeans = KMeans(n_clusters=2, random_state=0)
# # labels_kmeans=kmeans.fit_predict(RFM_cluster_scaled)
# #
# #
# # #%%
# # fig = plt.figure(figsize=(10, 8))
# # ax = fig.add_subplot(111, projection='3d')
# #
# # # Lấy nhãn của từng mẫu
# # labels = cluster.labels_
# #
# # # Vẽ các điểm dữ liệu theo nhóm
# # for label in set(labels):
# # group = RFM_cluster[labels == label]
# # ax.scatter(group['Recency'], group['Frequency'], group['Monetary'], label=f'Cluster {label}')
# #
# # # Đặt tên cho trục và biểu đồ
# # ax.set_xlabel('Recency')
# # ax.set_ylabel('Frequency')
# # ax.set_zlabel('Monetary')
# # ax.set_title('3D Scatter Plot of Clusters')
# #
# # # Hiển thị chú thích nhãn
# # ax.legend()
# #
# # # Hiển thị biểu đồ
# # plt.show()
# #
# # #%%
# # RFM_labeled_Kmeans = RFM_cluster.copy()
# # RFM_labeled_Kmeans['Cluster'] = labels_kmeans
# # sc = silhouette_score(RFM_cluster_scaled,labels_kmeans)
# # print(sc)
# # #%%
# # cluster_counts_Kmeans = RFM_labeled_Kmeans['Cluster'].value_counts()
# # #%%
# # # Tạo biểu đồ 3D
# # fig = plt.figure(figsize=(12, 10))
# # ax = fig.add_subplot(111, projection='3d')
# #
# # # Vẽ các điểm dữ liệu theo nhóm
# # for label in set(labels_kmeans):
# # group = RFM_labeled_Kmeans[labels_kmeans == label]
# # ax.scatter(group['Recency'], group['Frequency'], group['Monetary'], label=f'Cluster {label}')
# #
# # # Đặt tên cho trục và biểu đồ
# # ax.set_xlabel('Recency')
# # ax.set_ylabel('Frequency')
# # ax.set_zlabel('Monetary')
# # ax.set_title('3D Scatter Plot of K-Means Clusters')
# #
# # # Hiển thị chú thích nhãn
# # ax.legend()
# #
# # # Hiển thị biểu đồ
# # plt.show()
# #
# # #%%
# # model = KMeans()
# #
# # # Tạo visualizer để xem Elbow Method
# # visualizer = KElbowVisualizer(model, k=(2, 20), metric='silhouette', timings=False)
# #
# # # Fit dữ liệu vào visualizer
# # visualizer.fit(RFM_cluster_scaled)
# #
# # # Hiển thị biểu đồ
# # visualizer.show()
# # #%%
# # silhouette_scores = []
# #
# # # Thử nghiệm từ K=2 đến K=20
# # for k in range(2, 21):
# # kmeans = KMeans(n_clusters=k, random_state=0)
# # labels_kmeans = kmeans.fit_predict(RFM_cluster_scaled)
# # silhouette_avg = silhouette_score(RFM_cluster_scaled, labels_kmeans)
# # silhouette_scores.append(silhouette_avg)
# #
# # # Vẽ biểu đồ đường
# # plt.figure(figsize=(10, 6))
# # plt.plot(range(2, 21), silhouette_scores, marker='o', linestyle='-', color='b')
# # plt.title('Silhouette Score for different values of K')
# # plt.xlabel('Number of Clusters (K)')
# # plt.ylabel('Silhouette Score')
# # plt.grid(True)
# # plt.show()
#
# #%%