forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinaryDivTruncKernel.cu
53 lines (48 loc) · 1.85 KB
/
BinaryDivTruncKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <c10/util/TypeSafeSignMath.h>
#include <ATen/native/cuda/JitLoops.cuh>
#include <ATen/native/cuda/Loops.cuh>
#include <type_traits>
namespace at::native {
namespace binary_internal {
void div_trunc_kernel_cuda(TensorIteratorBase& iter) {
auto dtype = iter.common_dtype();
if (isIntegralType(dtype, /*includeBool*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(dtype, "div_trunc_cuda", [&]() {
gpu_kernel_with_scalars(
iter,
[] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { return a / b; });
});
} else if (iter.is_cpu_scalar(2)) {
// optimization for floating-point types: if the second operand is a CPU
// scalar, compute a * reciprocal(b). Note that this may lose one bit of
// precision compared to computing the division.
AT_DISPATCH_FLOATING_TYPES_AND2(
kHalf, kBFloat16, dtype, "div_trunc_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
auto inv_b = accscalar_t(1.0) / iter.scalar_value<accscalar_t>(2);
iter.remove_operand(2);
gpu_kernel(iter, [inv_b] GPU_LAMBDA(scalar_t a) -> scalar_t {
return std::trunc(a * inv_b);
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(
kHalf, kBFloat16, dtype, "div_trunc_cuda", [&]() {
gpu_kernel_with_scalars(
iter, [] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return std::trunc(a / b);
});
});
}
}
} // namespace binary_internal
REGISTER_DISPATCH(div_trunc_stub, &binary_internal::div_trunc_kernel_cuda);
} // namespace at::native