forked from jingyaogong/minimind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5-dpo_train.py
71 lines (61 loc) · 2.21 KB
/
5-dpo_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import torch
from transformers import TrainingArguments, AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer
from peft import get_peft_model, LoraConfig, TaskType
from datasets import load_dataset
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names:
lora_module_names.remove('lm_head')
return list(lora_module_names)
def init_model():
device = 'cuda:0'
# Do model patching and add fast LoRA weights
model_name_or_path = "minimind"
tokenizer_name_or_path = "minimind"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
tokenizer.pad_token = tokenizer.eos_token
target_modules = find_all_linear_names(model)
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8,
lora_alpha=16,
lora_dropout=0.1,
inference_mode=False,
target_modules=target_modules
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
model = model.to(device)
return model, tokenizer
if __name__ == '__main__':
model, tokenizer = init_model()
training_args = TrainingArguments(output_dir="./minimind_dpo",
per_device_train_batch_size=1,
remove_unused_columns=False)
################
# Dataset
################
# 确保路径正确,文件存在
dataset_path = './dataset/dpo/train_data.json'
# 加载数据集
train_dataset = load_dataset('json', data_files=dataset_path)
dpo_trainer = DPOTrainer(
model,
ref_model=None,
args=training_args,
beta=0.1,
train_dataset=train_dataset['train'],
tokenizer=tokenizer,
max_length=512,
max_prompt_length=512
)
dpo_trainer.train()