forked from bojone/bert_in_keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubject_extract.py
271 lines (217 loc) · 8.31 KB
/
subject_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#! -*- coding: utf-8 -*-
import json
from tqdm import tqdm
import os, re
import numpy as np
import pandas as pd
from keras_bert import load_trained_model_from_checkpoint, Tokenizer
import codecs
mode = 0
maxlen = 128
learning_rate = 5e-5
min_learning_rate = 1e-5
config_path = '../../kg/bert/chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '../../kg/bert/chinese_L-12_H-768_A-12/bert_model.ckpt'
dict_path = '../../kg/bert/chinese_L-12_H-768_A-12/vocab.txt'
token_dict = {}
with codecs.open(dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token_dict[token] = len(token_dict)
class OurTokenizer(Tokenizer):
def _tokenize(self, text):
R = []
for c in text:
if c in self._token_dict:
R.append(c)
elif self._is_space(c):
R.append('[unused1]') # space类用未经训练的[unused1]表示
else:
R.append('[UNK]') # 剩余的字符是[UNK]
return R
tokenizer = OurTokenizer(token_dict)
D = pd.read_csv('../ccks2019_event_entity_extract/event_type_entity_extract_train.csv', encoding='utf-8', header=None)
D = D[D[2] != u'其他']
classes = set(D[2].unique())
train_data = []
for t,c,n in zip(D[1], D[2], D[3]):
train_data.append((t, c, n))
if not os.path.exists('../random_order_train.json'):
random_order = range(len(train_data))
np.random.shuffle(random_order)
json.dump(
random_order,
open('../random_order_train.json', 'w'),
indent=4
)
else:
random_order = json.load(open('../random_order_train.json'))
dev_data = [train_data[j] for i, j in enumerate(random_order) if i % 9 == mode]
train_data = [train_data[j] for i, j in enumerate(random_order) if i % 9 != mode]
additional_chars = set()
for d in train_data + dev_data:
additional_chars.update(re.findall(u'[^\u4e00-\u9fa5a-zA-Z0-9\*]', d[2]))
additional_chars.remove(u',')
D = pd.read_csv('../ccks2019_event_entity_extract/event_type_entity_extract_eval.csv', encoding='utf-8', header=None)
test_data = []
for id,t,c in zip(D[0], D[1], D[2]):
test_data.append((id, t, c))
def seq_padding(X, padding=0):
L = [len(x) for x in X]
ML = max(L)
return np.array([
np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
])
def list_find(list1, list2):
"""在list1中寻找子串list2,如果找到,返回第一个下标;
如果找不到,返回-1。
"""
n_list2 = len(list2)
for i in range(len(list1)):
if list1[i: i+n_list2] == list2:
return i
return -1
class data_generator:
def __init__(self, data, batch_size=32):
self.data = data
self.batch_size = batch_size
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
idxs = range(len(self.data))
np.random.shuffle(idxs)
X1, X2, S1, S2 = [], [], [], []
for i in idxs:
d = self.data[i]
text, c = d[0][:maxlen], d[1]
text = u'___%s___%s' % (c, text)
tokens = tokenizer.tokenize(text)
e = d[2]
e_tokens = tokenizer.tokenize(e)[1:-1]
s1, s2 = np.zeros(len(tokens)), np.zeros(len(tokens))
start = list_find(tokens, e_tokens)
if start != -1:
end = start + len(e_tokens) - 1
s1[start] = 1
s2[end] = 1
x1, x2 = tokenizer.encode(first=text)
X1.append(x1)
X2.append(x2)
S1.append(s1)
S2.append(s2)
if len(X1) == self.batch_size or i == idxs[-1]:
X1 = seq_padding(X1)
X2 = seq_padding(X2)
S1 = seq_padding(S1)
S2 = seq_padding(S2)
yield [X1, X2, S1, S2], None
X1, X2, S1, S2 = [], [], [], []
from keras.layers import *
from keras.models import Model
import keras.backend as K
from keras.callbacks import Callback
from keras.optimizers import Adam
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None)
for l in bert_model.layers:
l.trainable = True
x1_in = Input(shape=(None,)) # 待识别句子输入
x2_in = Input(shape=(None,)) # 待识别句子输入
s1_in = Input(shape=(None,)) # 实体左边界(标签)
s2_in = Input(shape=(None,)) # 实体右边界(标签)
x1, x2, s1, s2 = x1_in, x2_in, s1_in, s2_in
x_mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(x1)
x = bert_model([x1, x2])
ps1 = Dense(1, use_bias=False)(x)
ps1 = Lambda(lambda x: x[0][..., 0] - (1 - x[1][..., 0]) * 1e10)([ps1, x_mask])
ps2 = Dense(1, use_bias=False)(x)
ps2 = Lambda(lambda x: x[0][..., 0] - (1 - x[1][..., 0]) * 1e10)([ps2, x_mask])
model = Model([x1_in, x2_in], [ps1, ps2])
train_model = Model([x1_in, x2_in, s1_in, s2_in], [ps1, ps2])
loss1 = K.mean(K.categorical_crossentropy(s1_in, ps1, from_logits=True))
ps2 -= (1 - K.cumsum(s1, 1)) * 1e10
loss2 = K.mean(K.categorical_crossentropy(s2_in, ps2, from_logits=True))
loss = loss1 + loss2
train_model.add_loss(loss)
train_model.compile(optimizer=Adam(learning_rate))
train_model.summary()
def softmax(x):
x = x - np.max(x)
x = np.exp(x)
return x / np.sum(x)
def extract_entity(text_in, c_in):
if c_in not in classes:
return 'NaN'
text_in = u'___%s___%s' % (c_in, text_in)
text_in = text_in[:510]
_tokens = tokenizer.tokenize(text_in)
_x1, _x2 = tokenizer.encode(first=text_in)
_x1, _x2 = np.array([_x1]), np.array([_x2])
_ps1, _ps2 = model.predict([_x1, _x2])
_ps1, _ps2 = softmax(_ps1[0]), softmax(_ps2[0])
for i, _t in enumerate(_tokens):
if len(_t) == 1 and re.findall(u'[^\u4e00-\u9fa5a-zA-Z0-9\*]', _t) and _t not in additional_chars:
_ps1[i] -= 10
start = _ps1.argmax()
for end in range(start, len(_tokens)):
_t = _tokens[end]
if len(_t) == 1 and re.findall(u'[^\u4e00-\u9fa5a-zA-Z0-9\*]', _t) and _t not in additional_chars:
break
end = _ps2[start:end+1].argmax() + start
a = text_in[start-1: end]
return a
class Evaluate(Callback):
def __init__(self):
self.ACC = []
self.best = 0.
self.passed = 0
def on_batch_begin(self, batch, logs=None):
"""第一个epoch用来warmup,第二个epoch把学习率降到最低
"""
if self.passed < self.params['steps']:
lr = (self.passed + 1.) / self.params['steps'] * learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
elif self.params['steps'] <= self.passed < self.params['steps'] * 2:
lr = (2 - (self.passed + 1.) / self.params['steps']) * (learning_rate - min_learning_rate)
lr += min_learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
def on_epoch_end(self, epoch, logs=None):
acc = self.evaluate()
self.ACC.append(acc)
if acc > self.best:
self.best = acc
train_model.save_weights('best_model.weights')
print 'acc: %.4f, best acc: %.4f\n' % (acc, self.best)
def evaluate(self):
A = 1e-10
F = open('dev_pred.json', 'w')
for d in tqdm(iter(dev_data)):
R = extract_entity(d[0], d[1])
if R == d[2]:
A += 1
s = ', '.join(d + (R,))
F.write(s.encode('utf-8') + '\n')
F.close()
return A / len(dev_data)
def test(test_data):
F = open('result.txt', 'w')
for d in tqdm(iter(test_data)):
s = u'"%s","%s"\n' % (d[0], extract_entity(d[1], d[2]))
s = s.encode('utf-8')
F.write(s)
F.close()
evaluator = Evaluate()
train_D = data_generator(train_data)
if __name__ == '__main__':
train_model.fit_generator(train_D.__iter__(),
steps_per_epoch=len(train_D),
epochs=10,
callbacks=[evaluator]
)
else:
train_model.load_weights('best_model.weights')