-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
287 lines (242 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from datetime import datetime
import os
import os.path as op
import argparse
import json
from datasets.dataset_loader import LocalDatasetLoader
from tracking.tracker import Tracker
import torch
import multiprocessing
import torch.nn as nn
import torch.optim as optim
# import matplotlib.pyplot as plt
from torchvision import transforms
from torch.utils.data import DataLoader
from pathlib import Path
import copy
from datasets import CzechSLRDataset, SLREmbeddingDataset, collate_fn_triplet_padd, collate_fn_padd
from models import SPOTER, SPOTER_EMBEDDINGS, train_epoch, evaluate, train_epoch_embedding, \
train_epoch_embedding_online, evaluate_embedding
from training.online_batch_mining import BatchAllTripletLoss
from training.batching_scheduler import BatchingScheduler
from training.gaussian_noise import GaussianNoise
from training.train_utils import train_setup, create_embedding_scatter_plots
from training.train_arguments import get_default_args
from utils import get_logger
try:
# Needed for argparse patching in case clearml is used
import clearml # noqa
except ImportError:
pass
PROJECT_NAME = "spoter"
CLEARML = "clearml"
def is_pre_batch_sorting_enabled(args):
return args.start_mining_hard is not None and args.start_mining_hard > 0
def get_tracker(tracker_name, project, experiment_name):
if tracker_name == CLEARML:
from tracking.clearml_tracker import ClearMLTracker
return ClearMLTracker(project_name=project, experiment_name=experiment_name)
else:
return Tracker(project_name=project, experiment_name=experiment_name)
def get_dataset_loader(loader_name):
if loader_name == CLEARML:
from datasets.clearml_dataset_loader import ClearMLDatasetLoader
return ClearMLDatasetLoader()
else:
return LocalDatasetLoader()
def build_data_loader(dataset, batch_size, shuffle, collate_fn, generator):
return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=collate_fn,
generator=generator, pin_memory=torch.cuda.is_available(), num_workers=multiprocessing.cpu_count())
def train(args, tracker: Tracker):
tracker.execute_remotely(queue_name="default")
# Initialize all the random seeds
gen = train_setup(args.seed, args.experiment_name)
os.environ['EXPERIMENT_NAME'] = args.experiment_name
logger = get_logger(args.experiment_name)
# Set device to CUDA only if applicable
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
# Construct the model
if not args.classification_model:
slrt_model = SPOTER_EMBEDDINGS(
features=args.vector_length,
hidden_dim=args.hidden_dim,
norm_emb=args.normalize_embeddings,
dropout=args.dropout
)
model_type = 'embed'
if args.hard_triplet_mining == "None":
cel_criterion = nn.TripletMarginLoss(margin=args.triplet_loss_margin, p=2)
elif args.hard_triplet_mining == "in_batch":
cel_criterion = BatchAllTripletLoss(
device=device,
margin=args.triplet_loss_margin,
filter_easy_triplets=bool(args.filter_easy_triplets)
)
else:
slrt_model = SPOTER(num_classes=args.num_classes, hidden_dim=args.hidden_dim)
model_type = 'classif'
cel_criterion = nn.CrossEntropyLoss()
slrt_model.to(device)
if args.optimizer == "SGD":
optimizer = optim.SGD(slrt_model.parameters(), lr=args.lr)
elif args.optimizer == "ADAM":
optimizer = optim.Adam(slrt_model.parameters(), lr=args.lr)
if args.scheduler_factor > 0:
mode = 'min' if args.classification_model else 'max'
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode=mode,
factor=args.scheduler_factor,
patience=args.scheduler_patience
)
else:
scheduler = None
if args.hard_mining_scheduler_triplets_threshold > 0:
batching_scheduler = BatchingScheduler(triplets_threshold=args.hard_mining_scheduler_triplets_threshold)
else:
batching_scheduler = None
# Ensure that the path for checkpointing and for images both exist
Path("out-checkpoints/" + args.experiment_name + "/").mkdir(parents=True, exist_ok=True)
Path("out-img/").mkdir(parents=True, exist_ok=True)
# Training set
transform = transforms.Compose([GaussianNoise(args.gaussian_mean, args.gaussian_std)])
dataset_loader = get_dataset_loader(args.dataset_loader)
dataset_folder = dataset_loader.get_dataset_folder(args.dataset_project, args.dataset_name)
training_set_path = op.join(dataset_folder, args.training_set_path)
with open(op.join(dataset_folder, 'id_to_label.json')) as fid:
id_to_label = json.load(fid)
id_to_label = {int(key): value for key, value in id_to_label.items()}
if not args.classification_model:
batch_size = args.batch_size
val_batch_size = args.batch_size
if args.hard_triplet_mining == "None":
train_set = SLREmbeddingDataset(training_set_path, triplet=True, transform=transform, augmentations=True,
augmentations_prob=args.augmentations_prob)
collate_fn_train = collate_fn_triplet_padd
elif args.hard_triplet_mining == "in_batch":
train_set = SLREmbeddingDataset(training_set_path, triplet=False, transform=transform, augmentations=True,
augmentations_prob=args.augmentations_prob)
collate_fn_train = collate_fn_padd
if is_pre_batch_sorting_enabled(args):
batch_size *= args.hard_mining_pre_batch_multipler
train_val_set = SLREmbeddingDataset(training_set_path, triplet=False)
# Train dataloader for validation
train_val_loader = build_data_loader(train_val_set, val_batch_size, False, collate_fn_padd, gen)
else:
train_set = CzechSLRDataset(training_set_path, transform=transform, augmentations=True)
batch_size = 1
val_batch_size = 1
collate_fn_train = None
train_loader = build_data_loader(train_set, batch_size, True, collate_fn_train, gen)
# Validation set
validation_set_path = op.join(dataset_folder, args.validation_set_path)
if args.classification_model:
val_set = CzechSLRDataset(validation_set_path)
collate_fn_val = None
else:
val_set = SLREmbeddingDataset(validation_set_path, triplet=False)
collate_fn_val = collate_fn_padd
val_loader = build_data_loader(val_set, val_batch_size, False, collate_fn_val, gen)
# MARK: TRAINING
train_acc, val_acc = 0, 0
losses, train_accs, val_accs = [], [], []
lr_progress = []
top_val_acc = -999
top_model_saved = True
logger.info("Starting " + args.experiment_name + "...\n\n")
if is_pre_batch_sorting_enabled(args):
mini_batch_size = int(batch_size / args.hard_mining_pre_batch_multipler)
else:
mini_batch_size = None
enable_batch_sorting = False
pre_batch_mining_count = 1
for epoch in range(1, args.epochs + 1):
start_time = datetime.now()
if not args.classification_model:
train_kwargs = {"model": slrt_model,
"epoch_iters": args.epoch_iters,
"train_loader": train_loader,
"val_loader": val_loader,
"criterion": cel_criterion,
"optimizer": optimizer,
"device": device,
"scheduler": scheduler if epoch >= args.scheduler_warmup else None,
}
if args.hard_triplet_mining == "None":
train_loss, val_silhouette_coef = train_epoch_embedding(**train_kwargs)
elif args.hard_triplet_mining == "in_batch":
if epoch == args.start_mining_hard:
enable_batch_sorting = True
pre_batch_mining_count = args.hard_mining_pre_batch_mining_count
train_kwargs.update(dict(enable_batch_sorting=enable_batch_sorting,
mini_batch_size=mini_batch_size,
pre_batch_mining_count=pre_batch_mining_count,
batching_scheduler=batching_scheduler if enable_batch_sorting else None))
train_loss, val_silhouette_coef, triplets_stats = train_epoch_embedding_online(**train_kwargs)
tracker.log_scalar_metric("triplets", "valid_triplets", epoch, triplets_stats["valid_triplets"])
tracker.log_scalar_metric("triplets", "used_triplets", epoch, triplets_stats["used_triplets"])
tracker.log_scalar_metric("triplets_pct", "pct_used", epoch, triplets_stats["pct_used"])
tracker.log_scalar_metric("train_loss", "loss", epoch, train_loss)
losses.append(train_loss)
# calculate acc on train dataset
silhouette_coefficient_train = evaluate_embedding(slrt_model, train_val_loader, device)
tracker.log_scalar_metric("silhouette_coefficient", "train", epoch, silhouette_coefficient_train)
train_accs.append(silhouette_coefficient_train)
val_accs.append(val_silhouette_coef)
tracker.log_scalar_metric("silhouette_coefficient", "val", epoch, val_silhouette_coef)
else:
train_loss, _, _, train_acc = train_epoch(slrt_model, train_loader, cel_criterion, optimizer, device)
tracker.log_scalar_metric("train_loss", "loss", epoch, train_loss)
tracker.log_scalar_metric("acc", "train", epoch, train_acc)
losses.append(train_loss)
train_accs.append(train_acc)
_, _, val_acc = evaluate(slrt_model, val_loader, device)
val_accs.append(val_acc)
tracker.log_scalar_metric("acc", "val", epoch, val_acc)
logger.info(f"Epoch time: {datetime.now() - start_time}")
logger.info("[" + str(epoch) + "] TRAIN loss: " + str(train_loss) + " acc: " + str(train_accs[-1]))
logger.info("[" + str(epoch) + "] VALIDATION acc: " + str(val_accs[-1]))
lr_progress.append(optimizer.param_groups[0]["lr"])
tracker.log_scalar_metric("lr", "lr", epoch, lr_progress[-1])
if val_accs[-1] > top_val_acc:
top_val_acc = val_accs[-1]
top_model_name = "checkpoint_" + model_type + "_" + str(epoch) + ".pth"
top_model_dict = {
"name": top_model_name,
"epoch": epoch,
"val_acc": val_accs[-1],
"config_args": args,
"state_dict": copy.deepcopy(slrt_model.state_dict()),
}
top_model_saved = False
# Save checkpoint if it is the best on validation and delete previous checkpoints
if args.save_checkpoints_every > 0 and epoch % args.save_checkpoints_every == 0 and not top_model_saved:
torch.save(
top_model_dict,
"out-checkpoints/" + args.experiment_name + "/" + top_model_name
)
top_model_saved = True
logger.info("Saved new best checkpoint: " + top_model_name)
# save top model if checkpoints are disabled
if not top_model_saved:
torch.save(
top_model_dict,
"out-checkpoints/" + args.experiment_name + "/" + top_model_name
)
logger.info("Saved new best checkpoint: " + top_model_name)
# Log scatter plots
if not args.classification_model and args.hard_triplet_mining == "in_batch":
logger.info("Generating Scatter Plot.")
best_model = slrt_model
best_model.load_state_dict(top_model_dict["state_dict"])
create_embedding_scatter_plots(tracker, best_model, train_loader, val_loader, device, id_to_label, epoch,
top_model_name)
logger.info("The experiment is finished.")
if __name__ == '__main__':
parser = argparse.ArgumentParser("", parents=[get_default_args()], add_help=False)
args = parser.parse_args()
tracker = get_tracker(args.tracker, PROJECT_NAME, args.experiment_name)
train(args, tracker)
tracker.finish_run()