forked from alexandermerritt/gups
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MPIRandomAccess_vanilla.c
624 lines (537 loc) · 23.9 KB
/
MPIRandomAccess_vanilla.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/* -*- mode: C; tab-width: 2; indent-tabs-mode: nil; -*- */
/*
* This code has been contributed by the DARPA HPCS program. Contact
* David Koester <[email protected]> or Bob Lucas <[email protected]>
* if you have questions.
*
*
* GUPS (Giga UPdates per Second) is a measurement that profiles the memory
* architecture of a system and is a measure of performance similar to MFLOPS.
* The HPCS HPCchallenge RandomAccess benchmark is intended to exercise the
* GUPS capability of a system, much like the LINPACK benchmark is intended to
* exercise the MFLOPS capability of a computer. In each case, we would
* expect these benchmarks to achieve close to the "peak" capability of the
* memory system. The extent of the similarities between RandomAccess and
* LINPACK are limited to both benchmarks attempting to calculate a peak system
* capability.
*
* GUPS is calculated by identifying the number of memory locations that can be
* randomly updated in one second, divided by 1 billion (1e9). The term "randomly"
* means that there is little relationship between one address to be updated and
* the next, except that they occur in the space of one half the total system
* memory. An update is a read-modify-write operation on a table of 64-bit words.
* An address is generated, the value at that address read from memory, modified
* by an integer operation (add, and, or, xor) with a literal value, and that
* new value is written back to memory.
*
* We are interested in knowing the GUPS performance of both entire systems and
* system subcomponents --- e.g., the GUPS rating of a distributed memory
* multiprocessor the GUPS rating of an SMP node, and the GUPS rating of a
* single processor. While there is typically a scaling of FLOPS with processor
* count, a similar phenomenon may not always occur for GUPS.
*
* Select the memory size to be the power of two such that 2^n <= 1/2 of the
* total memory. Each CPU operates on its own address stream, and the single
* table may be distributed among nodes. The distribution of memory to nodes
* is left to the implementer. A uniform data distribution may help balance
* the workload, while non-uniform data distributions may simplify the
* calculations that identify processor location by eliminating the requirement
* for integer divides. A small (less than 1%) percentage of missed updates
* are permitted.
*
* When implementing a benchmark that measures GUPS on a distributed memory
* multiprocessor system, it may be required to define constraints as to how
* far in the random address stream each node is permitted to "look ahead".
* Likewise, it may be required to define a constraint as to the number of
* update messages that can be stored before processing to permit multi-level
* parallelism for those systems that support such a paradigm. The limits on
* "look ahead" and "stored updates" are being implemented to assure that the
* benchmark meets the intent to profile memory architecture and not induce
* significant artificial data locality. For the purpose of measuring GUPS,
* we will stipulate that each thread is permitted to look ahead no more than
* 1024 random address stream samples with the same number of update messages
* stored before processing.
*
* The supplied MPI-1 code generates the input stream {A} on all processors
* and the global table has been distributed as uniformly as possible to
* balance the workload and minimize any Amdahl fraction. This code does not
* exploit "look-ahead". Addresses are sent to the appropriate processor
* where the table entry resides as soon as each address is calculated.
* Updates are performed as addresses are received. Each message is limited
* to a single 64 bit long integer containing element ai from {A}.
* Local offsets for T[ ] are extracted by the destination processor.
*
* If the number of processors is equal to a power of two, then the global
* table can be distributed equally over the processors. In addition, the
* processor number can be determined from that portion of the input stream
* that identifies the address into the global table by masking off log2(p)
* bits in the address.
*
* If the number of processors is not equal to a power of two, then the global
* table cannot be equally distributed between processors. In the MPI-1
* implementation provided, there has been an attempt to minimize the differences
* in workloads and the largest difference in elements of T[ ] is one. The
* number of values in the input stream generated by each processor will be
* related to the number of global table entries on each processor.
*
* The MPI-1 version of RandomAccess treats the potential instance where the
* number of processors is a power of two as a special case, because of the
* significant simplifications possible because processor location and local
* offset can be determined by applying masks to the input stream values.
* The non power of two case uses an integer division to determine the processor
* location. The integer division will be more costly in terms of machine
* cycles to perform than the bit masking operations
*
* For additional information on the GUPS metric, the HPCchallenge RandomAccess
* Benchmark,and the rules to run RandomAccess or modify it to optimize
* performance -- see http://icl.cs.utk.edu/hpcc/
*
*/
/* Jan 2005
*
* This code has been modified to allow local bucket sorting of updates.
* The total maximum number of updates in the local buckets of a process
* is currently defined in "RandomAccess.h" as MAX_TOTAL_PENDING_UPDATES.
* When the total maximum number of updates is reached, the process selects
* the bucket (or destination process) with the largest number of
* updates and sends out all the updates in that bucket. See buckets.c
* for details about the buckets' implementation.
*
* This code also supports posting multiple MPI receive descriptors (based
* on a contribution by David Addison).
*
* In addition, this implementation provides an option for limiting
* the execution time of the benchmark to a specified time bound
* (see time_bound.c). The time bound is currently defined in
* time_bound.h, but it should be a benchmark parameter. By default
* the benchmark will execute the recommended number of updates,
* that is, four times the global table size.
*/
#include <hpcc.h>
#include "RandomAccess.h"
#include "buckets.h"
#include "time_bound.h"
#include "verification.h"
#define CHUNK (1024)
#define CHUNKBIG (32768)
/* Allocate main table (in global memory) */
u64Int *HPCC_Table;
u64Int LocalSendBuffer[LOCAL_BUFFER_SIZE];
u64Int LocalRecvBuffer[MAX_RECV*LOCAL_BUFFER_SIZE];
#ifndef LONG_IS_64BITS
static void
Sum64(void *invec, void *inoutvec, int *len, MPI_Datatype *datatype) {
int i, n = *len; s64Int *invec64 = (s64Int *)invec, *inoutvec64 = (s64Int *)inoutvec;
for (i = n; i; i--, invec64++, inoutvec64++) *inoutvec64 += *invec64;
}
#endif
static void
AnyNodesMPIRandomAccessUpdate(u64Int logTableSize,
u64Int TableSize,
u64Int LocalTableSize,
u64Int MinLocalTableSize,
u64Int GlobalStartMyProc,
u64Int Top,
int logNumProcs,
int NumProcs,
int Remainder,
int MyProc,
s64Int ProcNumUpdates,
MPI_Datatype INT64_DT)
{
int i,j;
int ipartner,iterate,niterate,npartition,proclo,nlower,nupper,procmid;
int ndata,nkeep,nsend,nrecv,index, nfrac;
u64Int ran,datum,nglobalm1,indexmid;
u64Int *data,*send, *offsets;
MPI_Status status;
/* setup: should not really be part of this timed routine
NOTE: niterate must be computed from global TableSize * 4
not from ProcNumUpdates since that can be different on each proc
round niterate up by 1 to do slightly more than required updates */
data = (u64Int *) malloc(CHUNKBIG*sizeof(u64Int));
send = (u64Int *) malloc(CHUNKBIG*sizeof(u64Int));
for (i = 0; i < LocalTableSize; i++)
HPCC_Table[i] = i + GlobalStartMyProc;
ran = HPCC_starts(4*GlobalStartMyProc);
offsets = (u64Int *) malloc((NumProcs+1)*sizeof(u64Int));
MPI_Allgather(&GlobalStartMyProc,1,INT64_DT,offsets,1,INT64_DT,
MPI_COMM_WORLD);
offsets[NumProcs] = TableSize;
niterate = 4 * TableSize / NumProcs / CHUNK + 1;
nglobalm1 = TableSize - 1;
/* actual update loop: this is only section that should be timed */
for (iterate = 0; iterate < niterate; iterate++) {
for (i = 0; i < CHUNK; i++) {
ran = (ran << 1) ^ ((s64Int) ran < ZERO64B ? POLY : ZERO64B);
data[i] = ran;
}
ndata = CHUNK;
npartition = NumProcs;
proclo = 0;
while (npartition > 1) {
nlower = npartition/2;
nupper = npartition - nlower;
procmid = proclo + nlower;
indexmid = offsets[procmid];
nkeep = nsend = 0;
if (MyProc < procmid) {
for (i = 0; i < ndata; i++) {
if ((data[i] & nglobalm1) >= indexmid) send[nsend++] = data[i];
else data[nkeep++] = data[i];
}
} else {
for (i = 0; i < ndata; i++) {
if ((data[i] & nglobalm1) < indexmid) send[nsend++] = data[i];
else data[nkeep++] = data[i];
}
}
if (nlower == nupper) {
if (MyProc < procmid) ipartner = MyProc + nlower;
else ipartner = MyProc - nlower;
MPI_Sendrecv(send,nsend,INT64_DT,ipartner,0,&data[nkeep],
CHUNKBIG,INT64_DT,ipartner,0,MPI_COMM_WORLD,&status);
MPI_Get_count(&status,INT64_DT,&nrecv);
ndata = nkeep + nrecv;
} else {
if (MyProc < procmid) {
nfrac = (nlower - (MyProc-proclo)) * nsend / nupper;
ipartner = MyProc + nlower;
MPI_Sendrecv(send,nfrac,INT64_DT,ipartner,0,&data[nkeep],
CHUNKBIG,INT64_DT,ipartner,0,MPI_COMM_WORLD,&status);
MPI_Get_count(&status,INT64_DT,&nrecv);
nkeep += nrecv;
MPI_Sendrecv(&send[nfrac],nsend-nfrac,INT64_DT,ipartner+1,0,
&data[nkeep],CHUNKBIG,INT64_DT,
ipartner+1,0,MPI_COMM_WORLD,&status);
MPI_Get_count(&status,INT64_DT,&nrecv);
ndata = nkeep + nrecv;
} else if (MyProc > procmid && MyProc < procmid+nlower) {
nfrac = (MyProc - procmid) * nsend / nlower;
ipartner = MyProc - nlower;
MPI_Sendrecv(&send[nfrac],nsend-nfrac,INT64_DT,ipartner,0,
&data[nkeep],CHUNKBIG,INT64_DT,
ipartner,0,MPI_COMM_WORLD,&status);
MPI_Get_count(&status,INT64_DT,&nrecv);
nkeep += nrecv;
MPI_Sendrecv(send,nfrac,INT64_DT,ipartner-1,0,&data[nkeep],
CHUNKBIG,INT64_DT,ipartner-1,0,MPI_COMM_WORLD,&status);
MPI_Get_count(&status,INT64_DT,&nrecv);
ndata = nkeep + nrecv;
} else {
if (MyProc == procmid) ipartner = MyProc - nlower;
else ipartner = MyProc - nupper;
MPI_Sendrecv(send,nsend,INT64_DT,ipartner,0,&data[nkeep],
CHUNKBIG,INT64_DT,ipartner,0,MPI_COMM_WORLD,&status);
MPI_Get_count(&status,INT64_DT,&nrecv);
ndata = nkeep + nrecv;
}
}
if (MyProc < procmid) npartition = nlower;
else {
proclo = procmid;
npartition = nupper;
}
}
for (i = 0; i < ndata; i++) {
datum = data[i];
index = (datum & nglobalm1) - GlobalStartMyProc;
HPCC_Table[index] ^= datum;
}
}
/* clean up: should not really be part of this timed routine */
free(data);
free(send);
free(offsets);
}
static void
Power2NodesMPIRandomAccessUpdate(u64Int logTableSize,
u64Int TableSize,
u64Int LocalTableSize,
u64Int MinLocalTableSize,
u64Int GlobalStartMyProc,
u64Int Top,
int logNumProcs,
int NumProcs,
int Remainder,
int MyProc,
s64Int ProcNumUpdates,
MPI_Datatype INT64_DT)
{
int i,j;
int logTableLocal,ipartner,iterate,niterate;
int ndata,nkeep,nsend,nrecv,index,nlocalm1;
u64Int ran,datum,procmask;
u64Int *data,*send;
MPI_Status status;
/* setup: should not really be part of this timed routine */
data = (u64Int *) malloc(CHUNKBIG*sizeof(u64Int));
send = (u64Int *) malloc(CHUNKBIG*sizeof(u64Int));
for (i = 0; i < LocalTableSize; i++)
HPCC_Table[i] = i + GlobalStartMyProc;
ran = HPCC_starts(4*GlobalStartMyProc);
niterate = ProcNumUpdates / CHUNK;
logTableLocal = logTableSize - logNumProcs;
nlocalm1 = LocalTableSize - 1;
/* actual update loop: this is only section that should be timed */
for (iterate = 0; iterate < niterate; iterate++) {
for (i = 0; i < CHUNK; i++) {
ran = (ran << 1) ^ ((s64Int) ran < ZERO64B ? POLY : ZERO64B);
data[i] = ran;
}
ndata = CHUNK;
for (j = 0; j < logNumProcs; j++) {
nkeep = nsend = 0;
ipartner = (1 << j) ^ MyProc;
procmask = ((u64Int) 1) << (logTableLocal + j);
if (ipartner > MyProc) {
for (i = 0; i < ndata; i++) {
if (data[i] & procmask) send[nsend++] = data[i];
else data[nkeep++] = data[i];
}
} else {
for (i = 0; i < ndata; i++) {
if (data[i] & procmask) data[nkeep++] = data[i];
else send[nsend++] = data[i];
}
}
MPI_Sendrecv(send,nsend,INT64_DT,ipartner,0,
&data[nkeep],CHUNKBIG,INT64_DT,
ipartner,0,MPI_COMM_WORLD,&status);
MPI_Get_count(&status,INT64_DT,&nrecv);
ndata = nkeep + nrecv;
}
for (i = 0; i < ndata; i++) {
datum = data[i];
index = datum & nlocalm1;
HPCC_Table[index] ^= datum;
}
}
/* clean up: should not really be part of this timed routine */
free(data);
free(send);
}
int
HPCC_MPIRandomAccess(HPCC_Params *params) {
s64Int i;
s64Int NumErrors, GlbNumErrors;
int NumProcs, logNumProcs, MyProc;
u64Int GlobalStartMyProc;
int Remainder; /* Number of processors with (LocalTableSize + 1) entries */
u64Int Top; /* Number of table entries in top of Table */
u64Int LocalTableSize; /* Local table width */
u64Int MinLocalTableSize; /* Integer ratio TableSize/NumProcs */
u64Int logTableSize, TableSize;
double CPUTime; /* CPU time to update table */
double RealTime; /* Real time to update table */
double TotalMem;
int sAbort, rAbort;
int PowerofTwo;
double timeBound; /* OPTIONAL time bound for execution time */
u64Int NumUpdates_Default; /* Number of updates to table (suggested: 4x number of table entries) */
u64Int NumUpdates; /* actual number of updates to table - may be smaller than
* NumUpdates_Default due to execution time bounds */
s64Int ProcNumUpdates; /* number of updates per processor */
s64Int GlbNumUpdates; /* for reduction */
FILE *outFile = NULL;
MPI_Op sum64;
double *GUPs;
MPI_Datatype INT64_DT;
#ifdef LONG_IS_64BITS
INT64_DT = MPI_LONG;
#else
INT64_DT = MPI_LONG_LONG_INT;
#endif
GUPs = ¶ms->MPIGUPs;
MPI_Comm_size( MPI_COMM_WORLD, &NumProcs );
MPI_Comm_rank( MPI_COMM_WORLD, &MyProc );
if (0 == MyProc) {
outFile = fopen( params->outFname, "a" );
if (! outFile) outFile = stderr;
}
TotalMem = params->HPLMaxProcMem; /* max single node memory */
TotalMem *= NumProcs; /* max memory in NumProcs nodes */
TotalMem /= sizeof(u64Int);
/* calculate TableSize --- the size of update array (must be a power of 2) */
for (TotalMem *= 0.5, logTableSize = 0, TableSize = 1;
TotalMem >= 1.0;
TotalMem *= 0.5, logTableSize++, TableSize <<= 1)
; /* EMPTY */
/* determine whether the number of processors is a power of 2 */
for (i = 1, logNumProcs = 0; ; logNumProcs++, i <<= 1) {
if (i == NumProcs) {
PowerofTwo = HPCC_TRUE;
Remainder = 0;
Top = 0;
MinLocalTableSize = (TableSize / NumProcs);
LocalTableSize = MinLocalTableSize;
GlobalStartMyProc = (MinLocalTableSize * MyProc);
break;
/* number of processes is not a power 2 (too many shifts may introduce negative values or 0) */
}
else if (i > NumProcs || i <= 0) {
PowerofTwo = HPCC_FALSE;
/* Minimum local table size --- some processors have an additional entry */
MinLocalTableSize = (TableSize / NumProcs);
/* Number of processors with (LocalTableSize + 1) entries */
Remainder = TableSize - (MinLocalTableSize * NumProcs);
/* Number of table entries in top of Table */
Top = (MinLocalTableSize + 1) * Remainder;
/* Local table size */
if (MyProc < Remainder) {
LocalTableSize = (MinLocalTableSize + 1);
GlobalStartMyProc = ( (MinLocalTableSize + 1) * MyProc);
}
else {
LocalTableSize = MinLocalTableSize;
GlobalStartMyProc = ( (MinLocalTableSize * MyProc) + Remainder );
}
break;
} /* end else if */
} /* end for i */
HPCC_Table = XMALLOC( u64Int, LocalTableSize);
sAbort = 0; if (! HPCC_Table) sAbort = 1;
MPI_Allreduce( &sAbort, &rAbort, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD );
if (rAbort > 0) {
if (MyProc == 0) fprintf(outFile, "Failed to allocate memory for the main table.\n");
goto failed_table;
}
params->MPIRandomAccess_N = (s64Int)TableSize;
/* Default number of global updates to table: 4x number of table entries */
NumUpdates_Default = 4 * TableSize;
#ifdef RA_TIME_BOUND
/* estimate number of updates such that execution time does not exceed time bound */
/* time_bound should be a parameter */
/* max run time in seconds */
timeBound = Mmax( 0.25 * params->HPLrdata.time, (double)TIME_BOUND );
if (PowerofTwo) {
HPCC_Power2NodesTime(logTableSize, TableSize, LocalTableSize,
MinLocalTableSize, GlobalStartMyProc, Top,
logNumProcs, NumProcs, Remainder,
MyProc, INT64_DT, timeBound, (u64Int *)&ProcNumUpdates);
} else {
HPCC_AnyNodesTime(logTableSize, TableSize, LocalTableSize,
MinLocalTableSize, GlobalStartMyProc, Top,
logNumProcs, NumProcs, Remainder,
MyProc, INT64_DT, timeBound, (u64Int *)&ProcNumUpdates);
}
/* be conservative: get the smallest number of updates among all procs */
MPI_Reduce( &ProcNumUpdates, &GlbNumUpdates, 1, INT64_DT,
MPI_MIN, 0, MPI_COMM_WORLD );
/* distribute number of updates per proc to all procs */
MPI_Bcast( &GlbNumUpdates, 1, INT64_DT, 0, MPI_COMM_WORLD );
ProcNumUpdates = Mmin(GlbNumUpdates, (4*LocalTableSize));
/* works for both PowerofTwo and AnyNodes */
NumUpdates = Mmin((ProcNumUpdates*NumProcs), NumUpdates_Default);
#else
ProcNumUpdates = 4*LocalTableSize;
NumUpdates = NumUpdates_Default;
#endif
if (MyProc == 0) {
fprintf( outFile, "Running on %d processors%s\n", NumProcs, PowerofTwo ? " (PowerofTwo)" : "");
fprintf( outFile, "Total Main table size = 2^" FSTR64 " = " FSTR64 " words\n",
logTableSize, TableSize );
if (PowerofTwo)
fprintf( outFile, "PE Main table size = 2^" FSTR64 " = " FSTR64 " words/PE\n",
(logTableSize - logNumProcs), TableSize/NumProcs );
else
fprintf( outFile, "PE Main table size = (2^" FSTR64 ")/%d = " FSTR64 " words/PE MAX\n",
logTableSize, NumProcs, LocalTableSize);
fprintf( outFile, "Default number of updates (RECOMMENDED) = " FSTR64 "\n", NumUpdates_Default);
#ifdef RA_TIME_BOUND
fprintf( outFile, "Number of updates EXECUTED = " FSTR64 " (for a TIME BOUND of %.2f secs)\n",
NumUpdates, timeBound);
#endif
params->MPIRandomAccess_ExeUpdates = NumUpdates;
params->MPIRandomAccess_TimeBound = timeBound;
}
MPI_Barrier( MPI_COMM_WORLD );
CPUTime = -CPUSEC();
RealTime = -RTSEC();
if (PowerofTwo) {
Power2NodesMPIRandomAccessUpdate(logTableSize, TableSize, LocalTableSize,
MinLocalTableSize, GlobalStartMyProc, Top,
logNumProcs, NumProcs, Remainder,
MyProc, ProcNumUpdates, INT64_DT);
} else {
AnyNodesMPIRandomAccessUpdate(logTableSize, TableSize, LocalTableSize,
MinLocalTableSize, GlobalStartMyProc, Top,
logNumProcs, NumProcs, Remainder,
MyProc, ProcNumUpdates, INT64_DT);
}
MPI_Barrier( MPI_COMM_WORLD );
/* End timed section */
CPUTime += CPUSEC();
RealTime += RTSEC();
/* Print timing results */
if (MyProc == 0){
params->MPIRandomAccess_time = RealTime;
*GUPs = 1e-9*NumUpdates / RealTime;
fprintf( outFile, "CPU time used = %.6f seconds\n", CPUTime );
fprintf( outFile, "Real time used = %.6f seconds\n", RealTime );
fprintf( outFile, "%.9f Billion(10^9) Updates per second [GUP/s]\n",
*GUPs );
fprintf( outFile, "%.9f Billion(10^9) Updates/PE per second [GUP/s]\n",
*GUPs / NumProcs );
/* No longer reporting per CPU number */
/* *GUPs /= NumProcs; */
}
/* distribute result to all nodes */
MPI_Bcast( GUPs, 1, MPI_INT, 0, MPI_COMM_WORLD );
/* Verification phase */
/* Begin timing here */
CPUTime = -CPUSEC();
RealTime = -RTSEC();
if (PowerofTwo) {
HPCC_Power2NodesMPIRandomAccessCheck(logTableSize, TableSize, LocalTableSize,
GlobalStartMyProc,
logNumProcs, NumProcs,
MyProc, ProcNumUpdates,
INT64_DT, &NumErrors);
}
else {
HPCC_AnyNodesMPIRandomAccessCheck(logTableSize, TableSize, LocalTableSize,
MinLocalTableSize, GlobalStartMyProc, Top,
logNumProcs, NumProcs, Remainder,
MyProc, ProcNumUpdates,
INT64_DT, &NumErrors);
}
#ifdef LONG_IS_64BITS
MPI_Reduce( &NumErrors, &GlbNumErrors, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_WORLD );
#else
/* MPI 1.1 standard (obsolete at this point) doesn't define MPI_SUM
to work on `long long':
http://www.mpi-forum.org/docs/mpi-11-html/node78.html and
therefore LAM 6.5.6 chooses not to implement it (even though there
is code for it in LAM and for other reductions work OK,
e.g. MPI_MAX). MPICH 1.2.5 doesn't complain about MPI_SUM but it
doesn't have MPI_UNSIGNED_LONG_LONG (but has MPI_LONG_LONG_INT):
http://www.mpi-forum.org/docs/mpi-20-html/node84.htm So I need to
create a trivial summation operation. */
MPI_Op_create( Sum64, 1, &sum64 );
MPI_Reduce( &NumErrors, &GlbNumErrors, 1, INT64_DT, sum64, 0, MPI_COMM_WORLD );
MPI_Op_free( &sum64 );
#endif
/* End timed section */
CPUTime += CPUSEC();
RealTime += RTSEC();
if(MyProc == 0){
params->MPIRandomAccess_CheckTime = RealTime;
fprintf( outFile, "Verification: CPU time used = %.6f seconds\n", CPUTime);
fprintf( outFile, "Verification: Real time used = %.6f seconds\n", RealTime);
fprintf( outFile, "Found " FSTR64 " errors in " FSTR64 " locations (%s).\n",
GlbNumErrors, TableSize, (GlbNumErrors <= 0.01*TableSize) ?
"passed" : "failed");
if (GlbNumErrors > 0.01*TableSize) params->Failure = 1;
params->MPIRandomAccess_Errors = (s64Int)GlbNumErrors;
params->MPIRandomAccess_ErrorsFraction = (double)GlbNumErrors / (double)TableSize;
}
/* End verification phase */
/* Deallocate memory (in reverse order of allocation which should
help fragmentation) */
free( HPCC_Table );
failed_table:
if (0 == MyProc) if (outFile != stderr) fclose( outFile );
MPI_Barrier( MPI_COMM_WORLD );
return 0;
}