-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy patheval_dextr_mask.py
66 lines (63 loc) · 2.24 KB
/
eval_dextr_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from dextr.dextr import Dextr
import pycocotools.coco as cocoapi
from pycocotools.cocoeval import COCOeval
from pycocotools import mask as COCOmask
import numpy as np
import sys
import cv2
import json
from progress.bar import Bar
DEBUG = False
ANN_PATH = 'data/coco/annotations/instances_extreme_val2017.json'
IMG_DIR = 'data/coco/images/val2017/'
if __name__ == '__main__':
dextr = Dextr()
coco = cocoapi.COCO(ANN_PATH)
pred_path = sys.argv[1]
out_path = pred_path[:-5] + '_segm.json'
data = json.load(open(pred_path, 'r'))
anns = data
results = []
score_thresh = 0.2
num_boxes = 0
for i, ann in enumerate(anns):
if ann['score'] >= score_thresh:
num_boxes += 1
bar = Bar('Pred + Dextr', max=num_boxes)
for i, ann in enumerate(anns):
if ann['score'] < score_thresh:
continue
ex = np.array(ann['extreme_points'], dtype=np.int32).reshape(4, 2)
img_id = ann['image_id']
img_info = coco.loadImgs(ids=[img_id])[0]
img_path = IMG_DIR + img_info['file_name']
img = cv2.imread(img_path)
mask = dextr.segment(img[:, :, ::-1], ex)
mask = np.asfortranarray(mask.astype(np.uint8))
if DEBUG:
if ann['score'] < 0.1:
continue
print(ann['score'])
img = (0.4 * img + 0.6 * mask.reshape(
mask.shape[0], mask.shape[1], 1) * 255).astype(np.uint8)
cv2.imshow('img', img)
cv2.waitKey()
encode = COCOmask.encode(mask)
if 'counts' in encode:
encode['counts'] = encode['counts'].decode("utf8")
pred = {'image_id': ann['image_id'],
'category_id': ann['category_id'],
'score': ann['score'],
'segmentation': encode,
'extreme_points': ann['extreme_points']}
results.append(pred)
Bar.suffix = '[{0}/{1}]| Total: {total:} | ETA: {eta:} |'.format(
i, num_boxes, total=bar.elapsed_td, eta=bar.eta_td)
bar.next()
bar.finish()
json.dump(results, open(out_path, 'w'))
dets = coco.loadRes(out_path)
coco_eval = COCOeval(coco, dets, "segm")
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()