Skip to content

Latest commit

 

History

History
 
 

faster_generation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

FasterGeneration

FasterGeneration是PaddleNLP v2.2版本加入的文本生成高性能加速功能,其支持GPT、BART、UnifiedTransformer等多种NLP生成类预训练模型,并且支持多种解码策略,可以用于机器翻译、文本续写、文本摘要、对话生成等多种NLG任务的GPU场景预测加速。

功能底层依托于NV FasterTransformer,该库针对标准的Transformer和GPT模型、beam search和sampling解码策略进行了性能优化。PaddleNLP FasterGeneration在其之上进行了扩展,实现了更多模型和生成策略的优化支持,并将功能入口封装于model.generate函数。功能的开启和关闭通过传入use_faster参数进行控制(默认为关闭状态)。通过调用generate函数,用户可以简单的使用模型高性能推理功能。下图展示了FasterGeneration的启动流程:

Featrues

  • 全面支持生成式预训练模型。包括GPT、BART、mBART、UnifiedTransformer和UNIMO-text。
  • 支持大多数主流解码策略。包括Beam Search、Sampling、Greedy Search。以及Diverse Sibling Search、Length Penalty等子策略。
  • 解码速度快。最高可达非加速版generate函数的18倍并支持FP16混合精度计算
  • 易用性强。功能的入口为model.generate,与非加速版生成api的使用方法相同,当满足加速条件时使用jit即时编译高性能算子并用于生成,不满足则自动切换回非加速版生成api。
  • GPT、UnifiedTransformer和UNIMO-text模型支持高性能并行推理,在具备MPI和NCCL的环境中一行代码即可开启使用,允许通过多张小显存容量的 GPU 使用百亿大模型,预测速度较单卡也进一步提升。百亿模型四卡并行高性能推理速度达单卡高性能推理速度2+倍。

Inference Model Support

下表为PaddleNLP FasterGeneration对预训练模型和解码策略的支持情况(GPU)。

Model Name GPT2 BART mBART UnifiedTransformer
Model Structure Decoder Encoder-Decoder Encoder-Decoder Prefix-LM
Beam Search
Top-K Sampling
Top-P Sampling
Diverse Sibling Search
Forced Decoding
Length Penalty
Temperature
Repetition Penalty

Performence

FasterGeneration的高性能解码相比原版generate方法加速明显,并且与竞品相比有也有极大的速度优势。以下为性能对比图:

  • batch_size = 4, out_seq_len = 32
  • Device: Tesla V100-SXM2-16GB
  • CUDA version 11.2
  • cudnn version 8
  • torch version 1.10.0+cu113
  • transformers version 4.12.5

BART (bart-base, batch_size=4, max_length=32)

GPT (gpt2, batch_size=4, max_length=32)

更详细的性能数据请参见这里

Quick Start

高性能推理

为体现FasterGeneration的易用性,我们在samples文件夹中内置了几个典型任务示例,下面以基于GPT模型的中文文本续写任务为例:

python samples/gpt_sample.py

如果是第一次执行,PaddleNLP会启动即时编译(JIT Compile)自动编译高性能解码算子。

...
2021-11-17 13:42:56,771 - INFO - execute command: cd /10.2/hub/PaddleNLP/paddlenlp/ops/extenstions && /usr/local/bin/python FasterTransformer_setup.py build
INFO:utils.cpp_extension:execute command: cd /10.2/hub/PaddleNLP/paddlenlp/ops/extenstions && /usr/local/bin/python FasterTransformer_setup.py build
grep: warning: GREP_OPTIONS is deprecated; please use an alias or script
running build
running build_ext
-- The C compiler identification is GNU 8.2.0
-- The CXX compiler identification is GNU 8.2.0
-- The CUDA compiler identification is NVIDIA 10.2.89
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr
...

编译过程通常会花费几分钟的时间编译只会进行一次,之后再次使用高性能解码就不需要重新编译了,编译完成后会继续运行,可以看到生成的结果如下:

Model input: 花间一壶酒,独酌无相亲。举杯邀明月,
Result: 对影成三人。

打开示例代码 samples/gpt_sample.py ,我们可以看到如下代码:

...
model = GPTLMHeadModel.from_pretrained(model_name)
...
outputs, _ = model.generate(
    input_ids=inputs_ids, max_length=10, decode_strategy='greedy_search',
    use_faster=True)
...

可以看到,FasterGeneration的使用方法与 model.generate() 相同,只需传入输入tensor和解码相关参数即可,使用非常简便。如果要使用非加速版的 model.generate() 方法,只需传入 use_faster=False 即可,示例如下:

...
outputs, _ = model.generate(
    input_ids=inputs_ids, max_length=10, decode_strategy='greedy_search', use_faster=False)
...

NOTE: 需要注意的是,如果传入 model.generate() 的参数不满足高性能版本的要求。程序会做出提示并自动切换为非加速版本,例如我们在上面的例子中传入 min_length=1 ,会得到如下提示:

...
[2021-11-17 14:21:06,132] [ WARNING] - 'min_length != 0' is not supported yet in the faster version
[2021-11-17 14:21:06,132] [ WARNING] - FasterGeneration is not available, and the original version would be used instead.
...

关于该函数的详细介绍可以参考API文档generateAistudio教程文本生成任务实战:如何使用PaddleNLP实现各种解码策略samples文件夹中的其他示例的使用方法相同。

并行推理

FasterGeneration对GPT、UnifiedTransformer和UNIMO-text模型在高性能推理的基础上还实现了模型并行功能,其中GPT支持Tensor Parallel和Layer Parallel(Pipeline Parallel)两种并行策略的组合,UnifiedTransformer和UNIMO-text支持Tensor Parallel。关于这两种并行策略的详细介绍请参考Megatron论文

并行推理当前依赖MPI(MPICHOpenMPI均可)和NCCL,如需使用还请先安装依赖。在使用时,相比上面的单卡高性能加速代码中也只增加了from_pretrained创建加载模型之前加上enable_ft_para()一行。

GPT 并行推理

GPT高性能并行推理的完整使用示例已在gpt_mp_sample.py中提供,按照如下方式启动即可:

mpirun -n 4 python gpt_mp_sample.py --tensor_para_size 4 --layer_para_size 1

其中-n 4指明使用的进程和GPU数,tensor_para_sizetensor_para_size分别指明Tensor Parallel和Layer Parallel各自使用的GPU数,均设置为1则进行单卡预测。另外加上--use_fp16以使用FP16,加上--profile可以进行相应设置的性能测试。其他生成相关的参数设置释义如下:

  • model_name 指定使用的GPT模型,默认为gpt-cpm-larg-cn
  • max_length 指定生成的最大长度,默认为50。
  • topk 用于Top-K采样策略,采样时将只从概率最高K个token中采样,默认为1,即greedy search。
  • topp 用于Top-P采样策略,采样时将只从概率最高且累加概率不超过该值的token中采样,默认为1.0。
  • temperature 用于调整预测概率分布,默认为1.0,即保持模型原有的预测概率。

使用gpt-cpm-larg-cn(2.6B)和默认设置,在V100上4卡Tensor Parallel较单卡高性能预测速度提升约40%。

PLATO-XL 并行推理

PLATO-XL百亿对话预训练模型(11B UnifiedTransformer模型)高性能并行推理的完整使用示例已在plato_xl_sample.py中提供(当前只支持Tensor Parallel),按照如下方式启动即可:

mpirun -n 4 python plato_xl_sample.py

参数释义基本同上。在V100上4卡Tensor Parallel高性能预测为单卡高性能预测速度的2倍。

Generate Examples

除了以上示例之外,PaddleNLP的examples中大多使用了model.generate的示例都可以通过调整到合适的参数使用高性能推理。具体如下:

下面我们以基于 Unified Transformer 的任务型对话为例展示一下FasterGeneration的加速效果:

打开以上链接中Unified Transformer对应的example,找到README中对应预测的脚本。稍作修改如下:

export CUDA_VISIBLE_DEVICES=0
    python infer.py \
    --model_name_or_path=unified_transformer-12L-cn-luge \
    --output_path=./predict.txt \
    --logging_steps=10 \
    --seed=2021 \
    --max_seq_len=512 \
    --max_knowledge_len=256 \
    --batch_size=4 \
    --min_dec_len=1 \
    --max_dec_len=64 \
    --num_return_sequences=1 \
    --decode_strategy=sampling \
    --top_k=5 \
    --faster
    --device=gpu

由于这里只是展示性能,我们直接在 model_name_or_path 填入PaddleNLP预训练模型名称 unified_transformer-12L-cn-luge

可以看到,由于该任务为对话任务,我们为了防止模型生成过多安全回复(如:哈哈哈、不错等),保证生成结果具有更多的随机性,我们选择TopK-sampling作为解码策略,并让k=5。

打开 infer.py ,可以看到我们传入的脚本参数大多都提供给了 model.generate() 方法:

output = model.generate(
        input_ids=input_ids,
        token_type_ids=token_type_ids,
        position_ids=position_ids,
        attention_mask=attention_mask,
        seq_len=seq_len,
        max_length=args.max_dec_len,
        min_length=args.min_dec_len,
        decode_strategy=args.decode_strategy,
        temperature=args.temperature,
        top_k=args.top_k,
        top_p=args.top_p,
        num_beams=args.num_beams,
        length_penalty=args.length_penalty,
        early_stopping=args.early_stopping,
        num_return_sequences=args.num_return_sequences,
        use_fp16_decoding=args.use_fp16_decoding,
        use_faster=args.faster)

运行脚本,输出结果如下:

step 10 - 1.695s/step
step 20 - 1.432s/step
step 30 - 1.435s/step

可以看到,非加速版 generate() 方法的预测速度为每个step耗时1.5秒左右。

下面我们在启动脚本中传入 --faster 参数,该参数会向 generate() 方法传入 use_faster=True ,启动加速模式。同时我们需要设置 --min_dec_len=0 ,因为FasterGeneration当前还不支持该参数。新的脚本启动参数如下:

export CUDA_VISIBLE_DEVICES=0
    python infer.py \
    --model_name_or_path=unified_transformer-12L-cn-luge \
    --output_path=./predict.txt \
    --logging_steps=10 \
    --seed=2021 \
    --max_seq_len=512 \
    --max_knowledge_len=256 \
    --batch_size=4 \
    --min_dec_len=0 \
    --max_dec_len=64 \
    --num_return_sequences=1 \
    --decode_strategy=sampling \
    --top_k=5 \
    --device=gpu \
    --faster

再次运行脚本,输出结果如下(由于我们已经编译过高性能算子,所以这里不会重新编译):

[2021-11-23 13:38:09,200] [   DEBUG] - skipping 'FasterTransformer' extension (up-to-date) build
step 10 - 0.250s/step
step 20 - 0.156s/step
step 30 - 0.141s/step

可以看到,FasterGeneration的预测速度为每个step耗时0.15秒左右,相比非加速版提速超过9倍。