forked from Lornatang/VDSR-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimgproc.py
467 lines (349 loc) · 16.6 KB
/
imgproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Copyright 2021 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Realize the function of processing the dataset before training."""
import math
import random
from typing import Any
import cv2
import numpy as np
import torch
from torchvision.transforms import functional as F
__all__ = [
"image2tensor", "tensor2image",
"rgb2ycbcr", "bgr2ycbcr", "ycbcr2bgr", "ycbcr2rgb",
"center_crop", "random_crop", "random_rotate", "random_horizontally_flip", "random_vertically_flip",
]
def image2tensor(image: np.ndarray, range_norm: bool, half: bool) -> torch.Tensor:
"""Convert ``PIL.Image`` to Tensor.
Args:
image (np.ndarray): The image data read by ``PIL.Image``
range_norm (bool): Scale [0, 1] data to between [-1, 1]
half (bool): Whether to convert torch.float32 similarly to torch.half type.
Returns:
Normalized image data
Examples:
>>> image = cv2.imread("image.bmp", cv2.IMREAD_UNCHANGED).astype(np.float32) / 255.
>>> tensor_image = image2tensor(image, range_norm=False, half=False)
"""
tensor = F.to_tensor(image)
if range_norm:
tensor = tensor.mul_(2.0).sub_(1.0)
if half:
tensor = tensor.half()
return tensor
def tensor2image(tensor: torch.Tensor, range_norm: bool, half: bool) -> Any:
"""Converts ``torch.Tensor`` to ``PIL.Image``.
Args:
tensor (torch.Tensor): The image that needs to be converted to ``PIL.Image``
range_norm (bool): Scale [-1, 1] data to between [0, 1]
half (bool): Whether to convert torch.float32 similarly to torch.half type.
Returns:
Convert image data to support PIL library
Examples:
>>> tensor = torch.randn([1, 3, 128, 128])
>>> image = tensor2image(tensor, range_norm=False, half=False)
"""
if range_norm:
tensor = tensor.add_(1.0).div_(2.0)
if half:
tensor = tensor.half()
image = tensor.squeeze_(0).permute(1, 2, 0).mul_(255).clamp_(0, 255).cpu().numpy().astype("uint8")
return image
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def cubic(x: Any):
"""Implementation of `cubic` function in Matlab under Python language.
Args:
x: Element vector.
Returns:
Bicubic interpolation.
"""
absx = torch.abs(x)
absx2 = absx ** 2
absx3 = absx ** 3
return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (
((absx > 1) * (absx <= 2)).type_as(absx))
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def calculate_weights_indices(in_length: int, out_length: int, scale: float, kernel_width: int, antialiasing: bool):
"""Implementation of `calculate_weights_indices` function in Matlab under Python language.
Args:
in_length (int): Input length.
out_length (int): Output length.
scale (float): Scale factor.
kernel_width (int): Kernel width.
antialiasing (bool): Whether to apply antialiasing when down-sampling operations.
Caution: Bicubic down-sampling in PIL uses antialiasing by default.
"""
if (scale < 1) and antialiasing:
# Use a modified kernel (larger kernel width) to simultaneously
# interpolate and antialiasing
kernel_width = kernel_width / scale
# Output-space coordinates
x = torch.linspace(1, out_length, out_length)
# Input-space coordinates. Calculate the inverse mapping such that 0.5
# in output space maps to 0.5 in input space, and 0.5 + scale in output
# space maps to 1.5 in input space.
u = x / scale + 0.5 * (1 - 1 / scale)
# What is the left-most pixel that can be involved in the computation?
left = torch.floor(u - kernel_width / 2)
# What is the maximum number of pixels that can be involved in the
# computation? Note: it's OK to use an extra pixel here; if the
# corresponding weights are all zero, it will be eliminated at the end
# of this function.
p = math.ceil(kernel_width) + 2
# The indices of the input pixels involved in computing the k-th output
# pixel are in row k of the indices matrix.
indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
out_length, p)
# The weights used to compute the k-th output pixel are in row k of the
# weights matrix.
distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices
# apply cubic kernel
if (scale < 1) and antialiasing:
weights = scale * cubic(distance_to_center * scale)
else:
weights = cubic(distance_to_center)
# Normalize the weights matrix so that each row sums to 1.
weights_sum = torch.sum(weights, 1).view(out_length, 1)
weights = weights / weights_sum.expand(out_length, p)
# If a column in weights is all zero, get rid of it. only consider the
# first and last column.
weights_zero_tmp = torch.sum((weights == 0), 0)
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
indices = indices.narrow(1, 1, p - 2)
weights = weights.narrow(1, 1, p - 2)
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
indices = indices.narrow(1, 0, p - 2)
weights = weights.narrow(1, 0, p - 2)
weights = weights.contiguous()
indices = indices.contiguous()
sym_len_s = -indices.min() + 1
sym_len_e = indices.max() - in_length
indices = indices + sym_len_s - 1
return weights, indices, int(sym_len_s), int(sym_len_e)
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def imresize(image: Any, scale_factor: float, antialiasing: bool = True) -> Any:
"""Implementation of `imresize` function in Matlab under Python language.
Args:
image: The input image.
scale_factor (float): Scale factor. The same scale applies for both height and width.
antialiasing (bool): Whether to apply antialiasing when down-sampling operations.
Caution: Bicubic down-sampling in `PIL` uses antialiasing by default. Default: ``True``.
Returns:
np.ndarray: Output image with shape (c, h, w), [0, 1] range, w/o round.
"""
squeeze_flag = False
if type(image).__module__ == np.__name__: # numpy type
numpy_type = True
if image.ndim == 2:
image = image[:, :, None]
squeeze_flag = True
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
else:
numpy_type = False
if image.ndim == 2:
image = image.unsqueeze(0)
squeeze_flag = True
in_c, in_h, in_w = image.size()
out_h, out_w = math.ceil(in_h * scale_factor), math.ceil(in_w * scale_factor)
kernel_width = 4
# get weights and indices
weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale_factor, kernel_width, antialiasing)
weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale_factor, kernel_width, antialiasing)
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
img_aug.narrow(1, sym_len_hs, in_h).copy_(image)
sym_patch = image[:, :sym_len_hs, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)
sym_patch = image[:, -sym_len_he:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(in_c, out_h, in_w)
kernel_width = weights_h.size(1)
for i in range(out_h):
idx = int(indices_h[i][0])
for j in range(in_c):
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)
sym_patch = out_1[:, :, :sym_len_ws]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)
sym_patch = out_1[:, :, -sym_len_we:]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(in_c, out_h, out_w)
kernel_width = weights_w.size(1)
for i in range(out_w):
idx = int(indices_w[i][0])
for j in range(in_c):
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])
if squeeze_flag:
out_2 = out_2.squeeze(0)
if numpy_type:
out_2 = out_2.numpy()
if not squeeze_flag:
out_2 = out_2.transpose(1, 2, 0)
return out_2
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def rgb2ycbcr(image: np.ndarray, use_y_channel: bool = False) -> np.ndarray:
"""Implementation of rgb2ycbcr function in Matlab under Python language.
Args:
image (np.ndarray): Image input in RGB format.
use_y_channel (bool): Extract Y channel separately. Default: ``False``.
Returns:
ndarray: YCbCr image array data.
"""
if use_y_channel:
image = np.dot(image, [65.481, 128.553, 24.966]) + 16.0
else:
image = np.matmul(image, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128]
image /= 255.
image = image.astype(np.float32)
return image
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def bgr2ycbcr(image: np.ndarray, use_y_channel: bool = False) -> np.ndarray:
"""Implementation of bgr2ycbcr function in Matlab under Python language.
Args:
image (np.ndarray): Image input in BGR format.
use_y_channel (bool): Extract Y channel separately. Default: ``False``.
Returns:
ndarray: YCbCr image array data.
"""
if use_y_channel:
image = np.dot(image, [24.966, 128.553, 65.481]) + 16.0
else:
image = np.matmul(image, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
image /= 255.
image = image.astype(np.float32)
return image
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def ycbcr2rgb(image: np.ndarray) -> np.ndarray:
"""Implementation of ycbcr2rgb function in Matlab under Python language.
Args:
image (np.ndarray): Image input in YCbCr format.
Returns:
ndarray: RGB image array data.
"""
image_dtype = image.dtype
image *= 255.
image = np.matmul(image, [[0.00456621, 0.00456621, 0.00456621],
[0, -0.00153632, 0.00791071],
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
image /= 255.
image = image.astype(image_dtype)
return image
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def ycbcr2bgr(image: np.ndarray) -> np.ndarray:
"""Implementation of ycbcr2bgr function in Matlab under Python language.
Args:
image (np.ndarray): Image input in YCbCr format.
Returns:
ndarray: BGR image array data.
"""
image_dtype = image.dtype
image *= 255.
image = np.matmul(image, [[0.00456621, 0.00456621, 0.00456621],
[0.00791071, -0.00153632, 0],
[0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921]
image /= 255.
image = image.astype(image_dtype)
return image
def center_crop(lr_image: np.ndarray, hr_image: np.ndarray, image_size: int) -> [np.ndarray, np.ndarray]:
"""Crop small image patches from one image center area.
Args:
lr_image (np.ndarray): The input low-resolution image for `OpenCV.imread`.
hr_image (np.ndarray): The input high-resolution image for `OpenCV.imread`.
image_size (int): The size of the captured image area.
Returns:
np.ndarray: Small patch images.
"""
image_height, image_width = lr_image.shape[:2]
# Just need to find the top and left coordinates of the image
top = (image_height - image_size) // 2
left = (image_width - image_size) // 2
# Crop image patch
patch_lr_image = lr_image[top:top + image_size, left:left + image_size, ...]
patch_hr_image = hr_image[top:top + image_size, left:left + image_size, ...]
return patch_lr_image, patch_hr_image
def random_crop(lr_image: np.ndarray, hr_image: np.ndarray, image_size: int) -> [np.ndarray, np.ndarray]:
"""Crop small image patches from one image.
Args:
lr_image (np.ndarray): The input low-resolution image for `OpenCV.imread`.
hr_image (np.ndarray): The input high-resolution image for `OpenCV.imread`.
image_size (int): The size of the captured image area.
Returns:
np.ndarray: Small patch images.
"""
image_height, image_width = lr_image.shape[:2]
# Just need to find the top and left coordinates of the image
top = random.randint(0, image_height - image_size)
left = random.randint(0, image_width - image_size)
# Crop image patch
patch_lr_image = lr_image[top:top + image_size, left:left + image_size, ...]
patch_hr_image = hr_image[top:top + image_size, left:left + image_size, ...]
return patch_lr_image, patch_hr_image
def random_rotate(lr_image: np.ndarray, hr_image: np.ndarray, angles: list, center=None, scale_factor: float = 1.0) -> [np.ndarray, np.ndarray]:
"""Rotate an image randomly by a specified angle.
Args:
lr_image (np.ndarray): The input low-resolution image for `OpenCV.imread`.
hr_image (np.ndarray): The input high-resolution image for `OpenCV.imread`.
angles (list): Specify the rotation angle.
center (tuple[int]): Image rotation center. If the center is None, initialize it as the center of the image. ``Default: None``.
scale_factor (float): scaling factor. Default: 1.0.
Returns:
np.ndarray: Rotated images.
"""
image_height, image_width = lr_image.shape[:2]
if center is None:
center = (image_width // 2, image_height // 2)
# Random select specific angle
angle = random.choice(angles)
matrix = cv2.getRotationMatrix2D(center, angle, scale_factor)
rotated_lr_image = cv2.warpAffine(lr_image, matrix, (image_width, image_height))
rotated_hr_image = cv2.warpAffine(hr_image, matrix, (image_width, image_height))
return rotated_lr_image, rotated_hr_image
def random_horizontally_flip(lr_image: np.ndarray, hr_image: np.ndarray, p=0.5) -> [np.ndarray, np.ndarray]:
"""Flip an image horizontally randomly.
Args:
lr_image (np.ndarray): The input low-resolution image for `OpenCV.imread`.
hr_image (np.ndarray): The input high-resolution image for `OpenCV.imread`.
p (optional, float): rollover probability. (Default: 0.5)
Returns:
np.ndarray: Horizontally flip images.
"""
if random.random() < p:
lr_image = cv2.flip(lr_image, 1)
hr_image = cv2.flip(hr_image, 1)
return lr_image, hr_image
def random_vertically_flip(lr_image: np.ndarray, hr_image: np.ndarray, p=0.5) -> [np.ndarray, np.ndarray]:
"""Flip an image vertically randomly.
Args:
lr_image (np.ndarray): The input low-resolution image for `OpenCV.imread`.
hr_image (np.ndarray): The input high-resolution image for `OpenCV.imread`.
p (optional, float): rollover probability. (Default: 0.5)
Returns:
np.ndarray: Vertically flip images.
"""
if random.random() < p:
lr_image = cv2.flip(lr_image, 0)
hr_image = cv2.flip(hr_image, 0)
return lr_image, hr_image