This project provide W&D recommendation model using criteo dataset in CTR prediction.
You could download criteo dataset from Criteo Display Advertising Challenge, then unzip data and store dataset on local disk as ./data/train.txt
Model | Reference |
---|---|
Wide&Deep | HT Cheng, et al. Wide & Deep Learning for Recommender Systems, 2016. |
-
env
pip install -r requirements.txt
-
train and evalute the fp32 model as pth
bash run_model.sh
-
evalute the fp32 pytorch model and calculate the latency
bash run_inference.sh
-
produce fp32 onnx using pth and calculate the latency
bash run_to_onnx.sh
-
test fp32/fp16 onnx's using migraphx and calculate the latency
bash run_migraphx_onnx.sh
-
test fp32/fp16 onnx's using onnxruntime and calculate the latency
bash run_inference_onnx.sh bash run_inference_fp16_onnx.sh
We evaluate the model's auc:
dlrm model | auc(%) |
---|---|
Pytorch model | 79.09 |
FP32 onnx model | 79.09 |
FP16 onnx model | 79.09 |